

Unfiltering of the EarthCARE BBR instrument BM-RAD processor

Almudena Velazquez Blazquez, Edward Baudrez, Nicolas Clerbaux (RMIB) Carlos Domenech (GMV)

ESA webex 10th March 2021

BBR instrument unfiltering

- The BBR will measure SW (0.2 4μm) and TW (0.2 - >50μm) radiances at three fixed viewing zenith angles
- Filtered radiances are converted into unfiltered radiances: correction of the limited and non-uniform φ(λ)
- Accurate characterization of the Spectral Response, $\phi(\lambda)$, needed
- Information (assumption) about scene spectral signature is also needed
- Errors introduced in the unfiltering are related to the spectral variability of the $\phi(\lambda)$
- Unfiltering method based on theoretically simulated filtered and unfiltered radiances (LibRadtran 1.4)

BM-RAD product: Unfiltering

Input Products	B-NOM, B-SNG
	M-RGR, M-CM
	X-JSG
	X-MET
Output Products	Filtered BBR SW and LW radiances
	Unfiltered BBR SW and LW radiances
	IGBP surface types in the BBR PSFs
	BBR PSF-weighted MSI cloud products
6 Spatial resolutions	BBR grid
	Small, Full, Standard
	JSG
	Assessment Domain, JSG and JSG PSF corrected
	(only nadir)

Integration areas (PSF)

On **BBR grid**:

- 10 km x 10km : Standard resolution
- 5 km x 10km : **Small** resolution
- Full swath x 10km : Full resolution, no combined flux resolutions sampled @1km

On Joint Standard Grid (JSG):

- 5 JSG x 21 JSG : Assessment Domain (configurable)
- JSG pixel: only SW and LW radiances

Resolutions sampled @ 1JSG

10 km along-track integration

BM-RAD product: spatial resolutions

Unfiltering scheme

Full, Standard and Small resolutions

Assessment Domain and JSG resolutions

BM-RAD: Thermal contamination in the SW channel

Higher errors:

- Scenes with higher temperature (bright desert scenes) + scenes with high content of water vapor in warm atmospheres (tropical and mid-latitude summer)

Ice-phase high clouds
(placed at 12 km)

Full description of the method and results in "ATBD"

BM-RAD: Solar contamination in the LW channel

BM-RAD: Stand Alone SW Unfiltering

clear vege

cloudy soil clear rock

cloudy rock

clear snow

cloudy snow

thick clouds

cloudy vege clear soil

Surface type dependent Hyperbolic fit

3W Unfiltering factor for SZA=30°, VZA=55°, RAA=090° (SR CCDB May 2019) 1.38 clear ocean

Surface type	$<$ RMS $\alpha_{sw} >$	$E_{5\%}$	$E_{95\%}$
ocean	0.0043	0.0036	0.0051
vege	0.0046	0.0035	0.0051
soil	0.0056	0.0040	0.0065
rock	0.0055	0.0039	0.0063
snow	0.0059	0.0044	0.0069

Coef. Dependent on SZA, VZA, RAA

Full description of the method and results in "ATBD"

BM-RAD: MSI based SW Unfiltering

Cloud phase and cloud mask dependent (M-CM)

Hyperbolic fit:

$$\alpha_{sw} = a + b/L_{sw,sol}$$

Slightly better results than Stand-Alone

Coef. Dependent on SZA, VZA, RAA

Full description of the method and resul

Stand Alone LW Unfiltering

Surface type independent

Parabolic fit

 $\alpha_{lw} = \mathbf{a} + \mathbf{b} \cdot \mathbf{L}_{lw,th} + \mathbf{c} \cdot \mathbf{L}^2_{lw,th}$

EarthCARE LW Unfiltering factor for VZA=55° (SR CCDB May 2019) 1.095 clear semi-t clouds thick clouds 1.09 multi-I clouds Fit LW unfiltering factor 1.085 1.08 1.075 1.07 40 50 60 70 100 80 90 110 30 LW thermal radiance (Wm⁻²sr⁻¹) RMS error on factor ~ 0.0008 RMS error on radiance $\sim 0.05 \text{ W/m}^2/\text{sr}$

Full description of the method and results in "ATBD"

Unfiltering Halifax Scene v12

This case includes Sun just below the horizon over Greenland, cold air over Labrador, a cold-front near Halifax, dense overcast south of Halifax, and scattered shallow convection south of Bermuda.

LW Unfiltering check: BM-RAD vs Baja integrated radiances in the STD domain

SW Unfiltering check: BM-RAD vs Baja integrated radiances in the STD domain

Summary

- **Unfiltering** algorithm performing as expected.
- Very good agreement between output of BM-RAD processor and RT simulated Radiances from GEM scenes
 - RMS < 0.5 W m-2 sr-1 in the LW
 - RMS < 1 W m-2 sr-1 in the SW Standalone Unfiltering / MSI based
- Chaining with **BMA-FLX processor** successfully tested during CLARA and ICERAD activities
- **Thermal contamination in the SW channel** can be further validated during Commissioning since during night time the measurement of the SW channel will correspond to the Thermal contamination.
- Spectral response considerations :
 - The flatter the SR, the simpler and more accurate the unfiltering.
 - Any change in the spectral response will consequently lead to a change in the contamination, unfiltering coefficients and errors associated
 - \rightarrow to be monitored during commissioning by monitoring reference scene observations
- Unfiltering is key in the BBR processing -> Error in the unfiltering propagate to fluxes (BMA-FLX)
- **JSG pixel resolution** to be implemented during CARDINAL.
- Coangular co-incident observations with **GERB** and **CERES** will be analysed to assess the Unfiltering process.
- V8.0 of the software delivered and accepted