ATLID Layer Products (A-LAY), ATLID-MSI Synergy (AM-COL) & Hybrid End-to-End Aerosol Classification (HETEAC)

APRIL – Final Presentation 10 March 2021

Moritz Haarig, Ulla Wandinger, Anja Hünerbein, Florian Schneider, Stefan Horn TROPOS

haarig@tropos.de, ulla@tropos.de

ATLID Layer Products (A-LAY)

Geometrical layer detection based on Wavelet Covariance Transform applied to ATLID Mie co-polar signal

Dimension: along track x height ("Curtain")

ATLID-MSI Synergy Products (AM-COL)

Combines height-resolved information from ATLID with MSI column products on swath Dimension: along track x across track ("Carpet") Clouds Aerosol

Clouds

Aerosol

- horizontal resolution
- Thin clouds at 11 JSG pixel horizontal resolution
- Classification of multilayer clouds

Finding layers – a matter of horizontal resolution

Multilayer cloud scenarios

APRIL Final Presentation, 10 March 2021

ECSIM Halifax Scene

esa

355 nm Attenuated Backscatter, m¹sr¹, res. 11 JSG pixels

- Detected cloud top height
- Compare with A-PRO target classification (A-TC) \rightarrow Derive level of consistency
- Define multilayer scenarios \rightarrow important for synergy with MSI

ΔCTH along track

TROPOS

esa

٢

CTH Difference on Track

Freie Universität

ΔCTH on the swath

APRIL Final Presentation, 10 March 2021

synergistic cloud top height difference for entire MSI swath

TROPOS

esa

Extend ∆CTH from track to swath using the criteria:

- 1. ΔBRT at 10.8 μ m $\left| T_{B_{-10.8,t}} T_{B_{-10.8,s}} \right| < \Delta T_{\text{th}_{-10.8}}$
- 2. Same cloud phase
- 3. Same surface type
- 4. Δ Reflectance at 0.67µm $|\rho_{0.6,t} - \rho_{0.6,s}| < \rho_{th}$
- 5. Same cloud type (ISCCP)

Additional criteria at daytime

 \rightarrow Reflected in quality flag

ΔCTH on the swath

TROPOS

esa

Synergistic ∆CTH on MSI swath with cloud fraction per JSG pixel behind

Layer mean optical properties

ECSIM Halifax_aero Scene 355 nm Attenuated Backscatter, m⁻¹sr⁻¹, res. 11 JSG pixels

- Layer boundaries found with Wavelet Covariance Transform method
- Determine layer mean optical properties
- Calculate columnar integrated aerosol classification probabilities from A-TC product (A-PRO)
 → important for synergy with M-AOT

 \rightarrow marine aerosol

- Synergistic Cloud Top Height Difference derived from A-CTH and M-CTH L2 products
- Extend CTH difference from track to swath

- AOT and Ångström exponent (355/670/865 nm), dominant aerosol type
- Extend ATLID information from track to swath •

MSI-ATLID Synergy along track

TROPOS

esa

Spectral AOT at 355, 670, 870 nm

Added value to single wavelength ATLID

Hybrid End-to-End Aerosol Classification (HETEAC)

Hybrid End-to-End Aerosol Classification

To connect **microphysical**, **optical** and **radiative** properties of pre-defined aerosol components

Why hybrid?

Theoretical microphysical description that fits the experimental findings

Why end-to-end?

esa

Close the loop from microphysics to radiation

TROPOS

Experimental Basis for Aerosol Classification

TROPOS

esa

Illingworth et al., BAMS 2015

Recent updates

TROPOS

APRIL Final Presentation, 10 March 2021

Aerosol Components

Particle linear depolarization ratio, %

TROPOS

- 4 (pure) **aerosol components** to calculate mixing states
- Define **microphysical properties** for each component
- Calculate effective radius & refractive index of the **mixture**
 - \rightarrow Input for radiation calculation

	Dust Coarse mode	Sea salt Coarse mode	Pollution Fine mode	Smoke Fine mode	
r _{eff} , μm	1.94	1.94	0.14	0.14	Effective radius
m _R (355 nm)	1.54	1.37	1.45	1.50	Refractive index
m _ı (355 nm)	0.006	4.e-8	1.e-3	0.043	Validation by aircraft
Shape	Spheroid	Spherical	Spherical	Spherical	+ lidar campaigns

HETEAC - Conclusion

TROPOS

- Aerosol classification model developed for EarthCARE and implemented in ECSIM
- 4 basic aerosol components with prescribed microphysical properties to calculate mixtures
- Radiation closure for aerosol from ATLID & MSI with BBR

