Development of a new Solar Radiance-To-Flux Conversion to Improve SW Flux Estimations -final presentation-

Florian Tornow^{1,2,3}, <u>Nils Madenach</u>¹, René Preusker¹, Howard Barker⁴, Jason Cole⁴, Almudena Velázquez Blázquez⁵, Carlos Domenech⁶ and Jürgen Fischer¹

¹Freie Universität Berlin

²Columbia University, New York

³NASA Goddard Institute for Space Studies, New York

⁴Environment and Climate Change Canada, Toronto

⁵Royal Meteorological Institute, Brussels

⁶GMV, Madrid

nils.madenach@wew.fu-berlin.de

March 10, 2021

 EarhtCare's Radiative closure successful if ΔF = F_{RT}-F_{BBR} within ± 10 Wm²

- EarhtCare's radiative closure successful if ΔF = F_{RT}-F_{BBR} within ± 10 Wm²
- BBR Radiance-to-flux conversion should be as good as possible

- EarhtCare's radiative closure successful if ΔF = F_{RT}-F_{BBR} within ± 10 Wm²
- BBR Radiance-to-flux conversion should be as good as possible
- Quality of BBR SW flux estimates depends on underlying angular distribution model (ADM)

- EarhtCare's radiative closure successful if ΔF = F_{RT}-F_{BBR} within ± 10 Wm²
- BBR Radiance-to-flux conversion should be as good as possible
- Quality of BBR SW flux estimates depends on underlying angular distribution model (ADM)
 - ADMs account for the angular dependency of radiation field (anisotropy)

- EarhtCare's radiative closure successful if ΔF = F_{RT}-F_{BBR} within ± 10 Wm²
- BBR Radiance-to-flux conversion should be as good as possible
- Quality of BBR SW flux estimates depends on underlying angular distribution model (ADM)
 - ADMs account for the angular dependency of radiation field (anisotropy)
 - State-of-art sigmoidal approach is a function of τ, f and w_{10m}

- EarhtCare's radiative closure successful if ΔF = F_{RT}-F_{BBR} within ± 10 Wm²
- BBR Radiance-to-flux conversion should be as good as possible
- Quality of BBR SW flux estimates depends on underlying angular distribution model (ADM)
 - ADMs account for the angular dependency of radiation field (anisotropy)
 - State-of-art sigmoidal approach is a function of τ, f and w_{10m}
 - lack of important dependencies of e.g. cloud micro-physics

 Incorporated additional dependencies of SW radiance to cloud micro-physics (via R_{eff})

 $\log I(\theta_s, \theta_v, \phi) \sim \log S_0 {+} {\log \alpha} {-} 2 {\cdot} CTWV$

$$S_0 = \text{solar constant} \\ \alpha = \text{footprint albedo} \\ \theta_s, \theta_v, \phi = \text{sun-observer angles}$$

 Incorporated additional dependencies of SW radiance to cloud micro-physics (via R_{eff})

and CTWV

 $\log I(\theta_s, \theta_v, \phi) \sim \log S_0 + \log \alpha - 2 \cdot CTWV$

 $S_0 = \text{solar constant}$ $\alpha = \text{footprint albedo}$ $\theta_s, \theta_u, \phi = \text{sun-observer angles}$

 Incorporated additional dependencies of SW radiance to cloud micro-physics (via R_{eff})

▶ and CTWV

 Relates quantities linearly and more continuously to measured radiances

$$\log I(\theta_s, \theta_v, \phi) \sim \log S_0 + \log \alpha - 2 \cdot CTWV$$

$$S_0 = \text{solar constant}$$

 $\alpha = \text{footprint albedo}$
 $\theta_s, \theta_v, \phi = \text{sun-observer angles}$

- Incorporated additional dependencies of SW radiance to cloud micro-physics (via R_{eff})
- ▶ and CTWV
- Relates quantities linearly and more continuously to measured radiances
- Footprint albedo $\alpha(f, w_{10}, \tau, R_{eff})$ is calculated using two-stream theory

$$\log I(\theta_s, \theta_v, \phi) \sim \log S_0 + \log \alpha - 2 \cdot CTWV$$

$$S_0 = \text{solar constant} \\ \alpha = \text{footprint albedo} \\ \theta_s, \theta_v, \phi = \text{sun-observer angles}$$

Results

CTWV-sensitivity along the PP $\theta_S = 21^\circ$, ?

 $R_{eff}\text{-sensitivity}$ along the PP $\theta_S=21^\circ$, ?

Results

 Instantaneous flux deviations of up to ±25 W/m² when applied to CERES-MODIS and GERB-SEVIRI observations of marine clouds

Freie Universität

Results

- Instantaneous flux deviations of up to ±25 W/m² when applied to CERES-MODIS and GERB-SEVIRI observations of marine clouds
- Deviations associated with extremes in R_{eff}

Freie Universität

Results

- Instantaneous flux deviations of up to ±25 W/m² when applied to CERES-MODIS and GERB-SEVIRI observations of marine clouds
- Deviations associated with extremes in R_{eff}
- Deviations can propagate to daily means (up to $\pm 10 \ W/m^2$)

Freie Universität

Results

Instantaneous flux deviations of up to ±25 W/m² when applied to CERES-MODIS and GERB-SEVIRI observations of marine clouds

- Deviations associated with extremes in R_{eff}
- Deviations can propagate to daily means (up to $\pm 10 \ W/m^2$)
- and monthly means (up to $\pm 5 \ W/m^2$)

Thank You For Your Attention!