

The EarthCARE Multi Spectral Imager Cloud Products Level 2 M-CLD

Anja Hünerbein¹, Florian Schneider¹, Stefan Horn¹, Hartwig Deneke¹, Jan-Fokke Meirink² and Gerd-Jan van Zadelhoff²

¹Leibniz Institute for Tropospheric Research, Leipzig, Germany ²The Royal Netherlands Meteorological Institute, De Bilt, The Netherlands

TROPOS Leibniz Institute for Tropospheric Research

MSI cloud processing chain (M-CLD)

MSI cloud mask (M-CM)

EarthCARE simulated test scenes

MSI cloud mask (M-CM)

EarthCARE simulated test scene

HALIFAX scene v12

contact: anjah@tropos.de

MSI cloud mask (M-CM)

EarthCARE simulated test scenes

HALIFAX scene v12

WEBEX, 10 March, 2021

contact: anjah@tropos.de

MSI cloud optical and physical properties (M-COP)

EarthCARE simulated test scene

Inter-comparison of retrievals Halifax scene

Inter-comparison of retrievals Halifax scene

S. L. Mason

Validation M-CM adapted to SEVIRI

Adapted M-CLD OE to SEVIRI for comparison with International Cloud Working Group (ICWG)

1. golden day 13.06.2008 12:00 UTC

Some adaptation:

Input: ECMWF data, h5-SEVIRI, dem.nc on SEVIRI grid,

Set MSI_2.21 band = SEVIRI 1.65 band (for cloud mask and cloud type!!!)

Validation M-CM adapted to SEVIRI

Comparison with A-Train data

Selected CloudSAT, AMSR-E and SEVIRI cloud properties over region CUT 03 for the M-CLD algorithm (TPS).

Summary

M-CLD products combine visible to infrared MSI channels to determine cloud microphysical and macro-physical properties for each pixel (500m, swath width 150km)

Baseline-products comparable to Modis products (follow-on A-Train)

cloud cover (M-CF), cloud type (M-Ctyp) and cloud phase (M-CP)

 cloud optical thickness (M-COT), cloud effective radius (M-REF), cloud top height (M-CTH) and cloud water path (M-CWP)

M-CLD developments in APRIL:

Start	APRIL
IDL codes for M-COP and some fortran	 M-CLD processor build: V1.0 took 20 min
snipped from CASPER project for M-CM	 Forward operator simplification, improvements, verification with ECSIM test scenes M-CLD v8.0

M-CLD algorithm are adapted to passive imager instruments onboard polar and geostationary satellites (MODIS and SEVIRI) and verify successful against state of the art algorithms

Halifax v12 (20201125)

Cloud cover for the Halifax scene with different thresholds

Halifax v12 (20201125)

- > model cloud top height are calculated based on the transmission
- \succ the transmission integrated from the top as to be 1 and than the CTH is taken

TROPOS

APRIL Developments

