

Approaches to intercalibration/QA/QC and other network aspects of AD-Net and SKYNET systems

Tomoaki Nishizawa^{*1},

Y. Jin^{*1}, Akiko Higurashi^{*1}, Rei Kudo^{*2}, Hitoshi Irie^{*3}, Kazuaki Yasunaga^{*4}, Masaki Katsumata^{*5}, Keiya Yumimoto^{*6}, Shoken Ishii^{*7}, Hajime Okamoto^{*6}, Kaori Sato^{*6}, Takashi Y. Nakajima^{*8}

*1National Institute for Environmental Studies (NIES), Japan, *2Meteorological Research Institute (MRI), Japan,
 *3Chiba University, Japan, *4University of Toyama, Japan, *5Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan, *6Kyushu University, Japan, *7Tokyo Metropolitan University, Japan,*8Tokai University, Japan,

Contents of this presentation Outline of calibration/QA/QC regarding the instruments of the AD-Net and SKYNET that contributes to this EarthCARE validation

○ Summary and Comments on this theme

2nd ESA EarthCARE Validation Workshop

ESA UNCLASSIFIED – For ESA Official Use Only

25-28 May 2021 (online)

→ THE EUROPEAN SPACE AGENCY

Observation products used for validation

Obs. site	Lat Lon	Instrument	Parameter	
Tsukuba (Rural) *stopping	36.05N 140.12E	MRHSRL	 α, β, δ, S: 355 (Night) α, β, δ, S: 532 (Day & Night) Attenuated backscatter: 355/532/1064 (Day & Night) 	
Hedo (Maritime)	26.87N 128.25E	MRL	α, β, δ, S: 355/532 (Night) Attenuated backscatter: 355/532/1064 (Day & Night)	
		Sky radiometer	AOT: 340, 380, 400, 500, 675, 870, and 1020 (Day) Angstrom exponent (Day)	
Toyama (Rural)	36.7N 137.1E	MRL	 α, β, δ, S: 355/532 (Night) Attenuated backscatter: 355/532/1064 (Day & Night) 	
Fukuoka (Rural- Urban)	33.52N 130.48E	MRL =>MRHSRL (2021~)	 α, β, δ, S: 355 (Night) α, β, δ, S: 532 (Day & Night) *2021~ Attenuated backscatter: (Day & Night) 	
		Sky radiometer	AOT: 340, 380, 400, 500, 675, 870, and 1020 (Day) Angstrom exponent (Day)	
Koganei (Urban)	35.7N 139.48E	355 HSRL (2019~)	 α, β, δ, S: 355 (Day & Night) Attenuated backscatter: 355 (Day & Night) 	
Palau (Maritime)	7.34N 134.5E	MRL (2019~)	 α, β, δ, S: 355/532 (Night) Attenuated backscatter: 355/532/1064 (Day & Night) 	
RV Mirai (ocean)	Ocean	MRL	α, β, δ, S: 355/532 (Night) Attenuated backscatter: 355/532/1064 (Day & Night)	

AD-Net

MRL data processing and calibration

Calibration

Mirror Interference filter Half mirror 0 Lens Beam sampler ND filter Nd:YAG Laser х5 (Injection seeded) Expander Integrated sphere ň PZT stage <u>λ</u>=355nm PMT_ ₩2 Glass Δſ PMT_{HSR} Multimode fiber Ð

355nm HSRL

Specification of HSRL using a scanning interferometer							
Laser	Injection-seeded, Q-switching Nd:YAG laser (Continuum Surelite I-10)						
Wavelength	355 nm						
Pulse energy		100) mJ				
Beam div.	0.1 mrad (after x5 beam expander)						
Repetition rate	10 Hz						
Receiver	Takahashi µ-210 (Dia. = 21cm), Smaller telescope (Dia. = 5cm)						
Field-of-view	0.5 mrad (21cm telescope), 1 mrad (5cm telescope)						
Interferometer Michelson interferometer, FSR = 2.4 GHz Scanning speed: 1 Hz							
Detector	Photomultiplier (Licel PM-HV-R9880)						
Acquisition	160MSPS ADC (AVALDATA ADO-1616-STD)						
Height [km] Height [km] Heigh	Backscatter at 355	nm [10 ⁻⁵ /m/sr]		0.5 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
E ⁶	n-to-Backscatter Ra	atio (Lidar Ratio) at 355 nm [sr] Random error < 10%	E 120			
A H H H H H H H H H H H H H H H H H H H	Depolarization Ratio	n at 355 nm		- 80 - 60 - 40 - 20			
Heidht [km]			Random error < 10%	0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0.0			
25 26	27 28	29 30	1 2 3	4			

[Jin et al., OE, 2020] ^{2019–09}

355nm HSRL data processing and calibration

SKYNET

AOT, SSA measured by skyradiometer

Skyradiometer (by Prede co, Japan) √Sun-scanning sunphotometer √Measured wavelengths:

315, 340, 380, 400, 500, 675,

870, 940, 1020, 1627, 2200nm

✓Data recorded every 10~15min✓Derived parameters:

AOT, Angstrom exponent, SSA, Size distribution, Refractive index

Skyradiometer data processing and calibration

Offline

Automated processing

Mountain calibration activity

Period: Oct. 27-Nov. 5, 2016
Place: Mauna Loa (MLO), Hawai'i, USA

OPurpose:

Direct calibration of the Chiba-U's master sky radiometer by the Langley method for all channels, including cloud channels.

Summary and Comments

AD-Net

- Calibration using operational data is performed regularly, however, calibration measurement of depolarization is performed annually.
- We strives to keep data quality through regular maintenance about a year (replacement of consumables, alignment adjustment, polarization calibration, etc)
- \checkmark The status of the instrument is constantly monitored via the data sent over the network.
- Data screening of products extracted by Raman lidar and HSRL observation is under consideration.

SKYNET

- ✓ Calibration using operational data is performed regularly.
- We strives to keep data quality through regular maintenance (generally, about a year) (replacement of consumables, alignment adjustment, etc)
- \checkmark The status of the instrument is constantly monitored via the data sent over the network.
- Intercalibration using "a master instrument" calibrated by the Langley method in mountain observation has been conducted occasionally.
- A data center (International SKYNET data center) is being constructed to aggregate all skynet data, centrally analyze it, generate and publish standard products [Nakajima et al. 2020] (this standard products will be used for the EarthCARE validation). Data screening of products is under consideration.

Simple relationship between solar disk and SVA

 $\Delta\Omega = 2\pi(1 - \cos\theta) = 0.239 \,\mathrm{msr}$

ΔΩ: solid view angle θ: half angle of circular cone (=1.00°/2)

Example of solar disk scan

Scattering angle

Far lamp method: Experiments for Solid View Angle

Idea of Improved Langley method

$$\ln F = \ln F_{TOA} - m\tau$$

$$\ln F = \ln \frac{F_0}{r^2} - m\tau$$

$$F_0^* = Fr^2 \exp(m\tau)$$

$$\ln Fr^2 = \ln F_0 - m\tau$$

$$\ln Fr^2 = \ln F_0 - m(\tau_{non-aerosol} + \tau_{aerosol})$$

$$\ln Fr^2 = \ln F_0 - m(\tau_{non-aerosol}) - m\tau_{aerosol}$$

$$\ln Fr^2 = \ln F_0 - m\tau_{non-aerosol} - m\frac{\tau_s}{\omega}$$

$$\frac{\ln Fr^2 + m\tau_{non-aerosol}}{y} = \ln F_0 - \frac{1}{\omega} \frac{m\tau_s}{x}$$

Example of results: Improved Langley method

Evaluation of F₀ derived by IL method

