

Latin America LIdar NETwork - LALINET CAL/VAL

Eduardo Landulfo¹, Fábio J. S. Lopes^{1,2}, Alvaro Bastidas³, Juan Luis Guerrero-Rascado⁴ and LALINET⁵

- 1 Centro de Laser e Aplicações (CELAP) Instituto de Pesquisas Energéticas e Nucleares (IPEN), Brasil
- 2 Departamento de Ciências Ambientais (DCA) Universidade Federal de São Paulo (UNIFESP), Brasil
- 3 Grupo de Investigación Láseres y Espectroscopía Universidad Nacional de Colombia Sede Medellín Colombia
- 4 Applied Physics Department and Andalusian Institute for Earth System Research University of Granada Spain
- 5 University of São Paulo-USP-Brasil, University of Magallanes-Chile, Laser and Applications Research Center CONICET Argentina, Universidad de la Frontera-Chile, Higher University of San Andrés (UMSA) Bolivia, National University of Colombia, Medellín

EarthCARE Status – May 2021

2nd ESA EarthCARE Validation Workshop

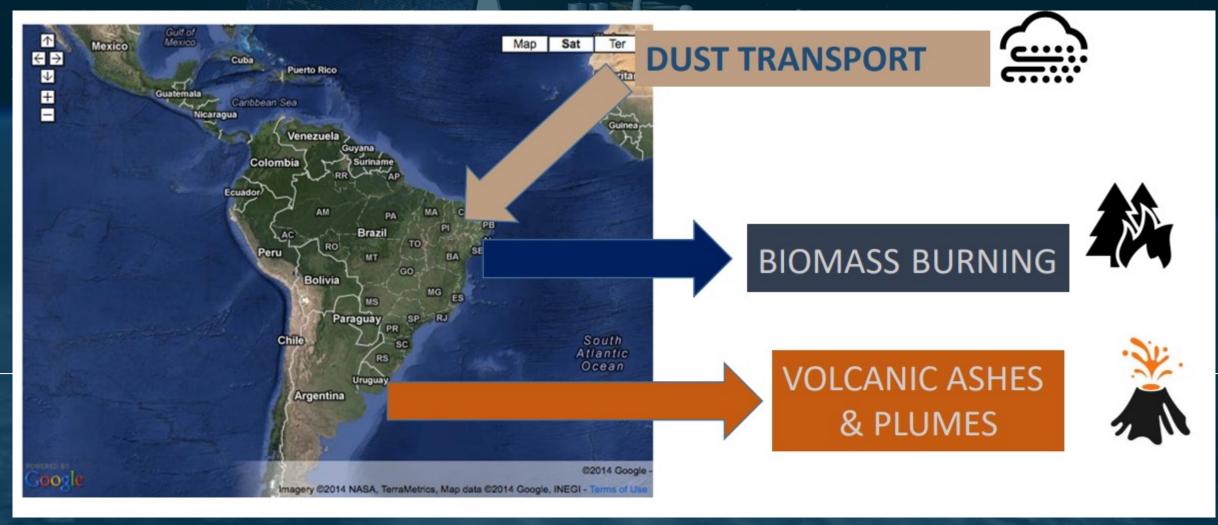
25-28 May 2021 (online)

ESA UNCLASSIFIED – For ESA Official Use Only

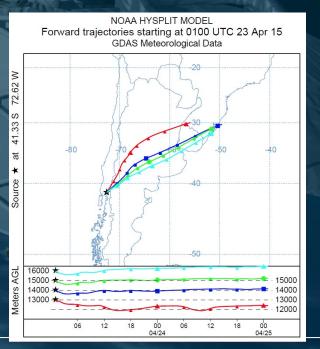
Latin America LIdar NETwork - LALINET

ST.	ID	LAT(S) LON(W)	Channels (nm)
Buenos Aires	AEP	34.56°S 58.42°W	1064, 532 ^p & 355 ^p
Buenos Aires	VMA	34.56°S 58.51°W	1064, 607, 532 ^p , 387 & 355 ^p
Neuquen	NQN	38.95°S 68.13°W	1064, 532 ^p & 355 ^p
Barilo- che	BRC	41.15°S 71.16°W	1064, 607, 532, 387 & 355
Commo doro	CDR	45.79°S 67.46°W	1064, 532 & 355
Gal- legos	RGL	51.61°S 69.31°W	1064, 532 ^p & 355 ^p
Punta Arenas	PAR*	53.13°S 70.88°W	1064, 607, 532 ^p , 408, 387 & 355 ^p
S. Paulo	SPU	23°13′ 46°28′	1064, 607, 532, 408, 387 & 355
S. Paulo	SPT	VAR	607, 532
Man- aus	MAO	02.60°S 60.21°W	408, 387, 355
Natal	NAT	05.82°S 35.20°W	1064, 532 ^p & 355 ^p
Temuco*	TMU*	38.74°S 72.62°W	1064, 532 ^p & 355 ^p
Medellin	MED	06.26°N 75.58°W	532 & 355
La Paz	LPZ	16.54°S 68.07°W	1064, 532 ^p & 355 ^p

- Validation of EarthCARE products of aerosol and cloud profiles of backscatter, extinction and lidar-ratio, backscatter and extinction Ansgtrom Exponent and Color ratio
- Assessment of spatio-temporal representativeness of EarthCARE aerosol and cloud products
- Data will be used from:
 - The (historical) LALINET database,
 - Correlative measurements
 performed by selected LALINET
 stations during close proximity
 EarthCare overpasses


ESA UNCLASSIFIED - For ESA Official Use Only

Latin America LIdar NETwork - LALINET



VOLCANIC ASHES & PLUMES

• 22nd – 23rd of April, 2015 – Calbuco volcano began eruption

Latin America LIdar NETwork - LALINET

- First eruption since 1972
- Ash cloud achieved above 15 km of altitude

ESA UNCLASSIFIED - For ESA Official Use Only

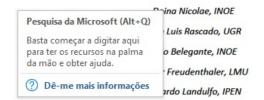
Latin America LIdar NETwork - LALINET

- Measurements of 1064 nm, 532 nm and 355 nm from elastic and multiwavelength lidar systems in order to retrieve backscatter, extinction, lidar ratio profiles, plus backscatter and extinction Ansgtrom Exponent and Color ratio.
- 3+ hour measurements centered on the closest approach of EarthCARE for each station - for overpasses within horizontal range distances of 120 km for each station.
- Statistical validation for at least 7 stations distributed over South America, i.e.,
 Manaus-Brasil, São Paulo-Brasil, Medellin-Colombia, Buenos Aires-Argentina,
 Punta Arenas-Chile, Temuco-Pucon-Chile, La Paz-Bolivia.

Lessons from the past – Alcantara

- Implementation of QA/QC for some LALINET stations similar to EARLINET program
 - Handbook of instruments
 - Implementation of the Standard operating procedures
 - Implementation of QA tests
 - Dark current, Zero bin, Telecovers, Bin-shift, Rayleigh fit
 - Identification of problems and optimization
 - Implementation of SCC data format
- Implementation of Single Calculus Chain (SCC) data format and processing

Lessons from the past – Alcantara



	Lidar specifications	Measured parameters	Application
SPU	Emission: 1064, 532,	- backscatter coefficient at	- aerosol layering and
	355nm	355, 532, 1064nm	dynamics
	Detection: 1064, 607, 532,	- extinction coefficient at	- typing based on
	408, 387, 355nm	387 and 607nm	backtrajectories and sun
	Range: 1- 15 km	- derived optical	photometer
		parameters: lidar ratio,	- advanced aerosol
		extinction derived	typing: NATALI (low res)
		Angstrom, color ratio	- long range transport
		- water vapor mixing ratio	studies (backtrajectories
			and sun-photometer)
MAO	Emission: 355nm	- backscatter coefficient at	- aerosol layering and
	Detection: 408, 387,	355nm	dynamics
	355nm	- extinction coefficient at	- typing based on
	Range: 0.7 – 15 km	387nm	backtrajectories and sun
		- derived optical	photometer
		parameters: lidar ratio	
		- water vapor mixing ratio	
NAT	Emission: 1064, 532,	- backscatter coefficient at	- aerosol layering and
	355nm	355, 532, 1064nm	dynamics
	Detection: 1064, 532p,	- volume and particle	- typing based on
	532c, 355 nm	linear depolarization ratio	backtrajectories,
	Range: 1 - 15 km	- derived optical	depolarization
		parameters: color ratio	parameters and sun

APEL

<u>Assessment of atmospheric optical Properties during biomass</u> burning Events and Long-range transport of desert dust

Fábio Lopes, IPEN

Lucas Alados Arboledas, UGR

Diego Gouveia, MAO

Gregori de Arruda Moreira, IPEN

Anderson Guedes, NAT

Marcos Paulo Araújo, NAT

Lessons from the past – Alcantara

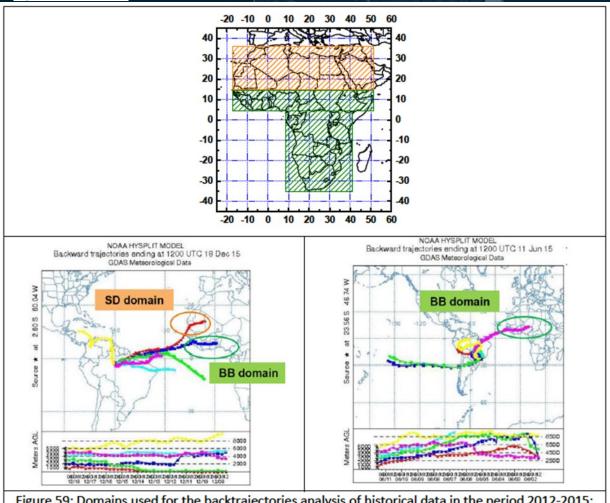
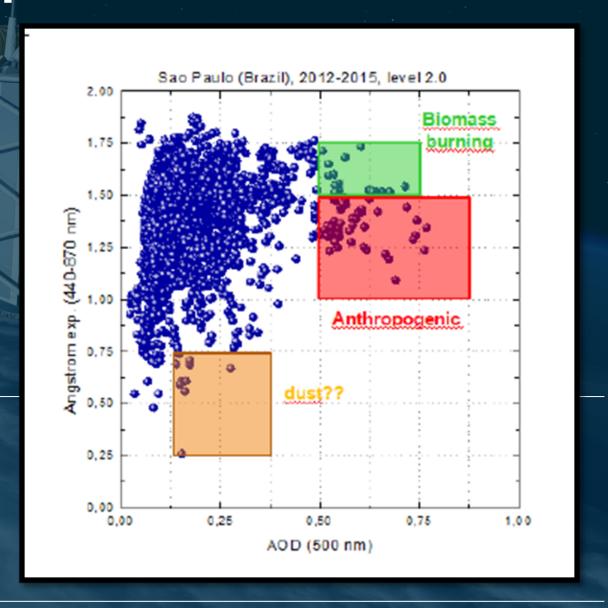



Figure 59: Domains used for the backtrajectories analysis of historical data in the period 2012-2015: Saharan dust domain (orange) and biomass burning domain (green). Back trajectory example – BB and SD domains.

Validation approaches and strategies

- All LALINET stations involved in EarthCARE validation work together with AERONET.
 - Sun-photometer products will be integrated in synergy with lidar systems in order to intercompare with EarthCARE synergistic products
- Use of LALINET historical database to derive the aerosol and cloud predominant properties of South America Continent

Funding status

- At the present only maintenance and operation are fully covered by individual institutions
- A joint project to commit to special operations and CAL-VAL acitivities is under study for submission involving all LALINET participant stations.
- An Alcantara like project would be welcome = 2 EU + LALINET