

EarthCARE Optical Instruments In Orbit Characterisation, Calibration and Verification

2nd ESA EarthCARE Validation Workshop

Kotska Wallace, Mission and Optical Payload Manager

25-May-2021 (online)

→ THE EUROPEAN SPACE AGENCY

Content

Overview of in orbit commissioning activities

BBR calibration concept

BBR IOCV

MSI calibration concept

MSI IOCV

[ATLID \rightarrow See following presentation from Georgios Tzeremes.]

Overview of in-orbit commissioning activities

→ THE EUROPEAN SPACE AGENCY

EarthCARE commissioning phase 6 months, ending with In-Orbit Commissioning Review (IOCR):

- Achieve final reference orbit.
- Complete platform functional verification, health checks, instruments switch-on & decontamination.
- Verification of ground segment (interfaces, data flow, processing, archiving, mission planning).
- Instruments in-orbit characterisation, calibration and in-orbit performance verification.
 - Instrument health, function, calibrations, optimisation of settings and verification of expected performance.
 - (Limited to nominal instrument side, i.e. no redundancy check out.)
 - Check of instrument co-registration using land marks or terrain elevations.
 - Product verification (i.e. consistency checks etc., not using external correlative data.)
 - L1 algorithms by industry and any processor updates implemented by ESA.
 - L2 algorithms by L2 expert teams.
- Teams at ESA (Project, Flight Operations Segment, Payload and Data Ground Segment), JAXA Ground Segment, Industry Satellite and Instrument Teams, Validation Teams, ECMWF

eesa

Overview of IOCV activities - indicative timeline

- Validation of data products and processing algorithms is <u>initiated</u> during the commissioning phase
- 1st product releases for each of the 4 instruments in coordination with ESA project, mission management & JAXA (individual products, followed later by multiple products view of same scene)
 EarthCARE optical instruments in-orbit characterisation, calibration and verification - 2nd ESA EarthCARE Validation Workshop- Webex [25 May 2021] Slide 4

Overview of IOCV activities - instruments timeline

→ THE EUROPEAN SPACE AGENCY

EarthCARE optical instruments in-orbit characterisation, calibration and verification - 2nd ESA EarthCARE Validation Workshop– Webex | 25 May 2021 | Slide 5

*

BBR calibration concept

→ THE EUROPEAN SPACE AGENCY

LW and SW data from 3 telescopes; LW data retrieved via subtraction of SW from TW channel.

- Requires knowledge of the instrument and scene spectral response.
 - Unfiltering can be enhanced with use of MSI data to improved the scene spectral correction factor

BBR calibration approach:

- <u>TW</u>: Two point calibration using hot & cold blackbodies
 - Performed on-board automatically, every 90 s, for removal of signals offset (instrument self emission) & gain determination. Baffle -
- <u>SW</u>: SW aging data from solar illuminated diffusor.
 - Collected over 30 orbits, every 2 months.
 - Monitor Photo Diodes in the telescope baffles assess aging of the diffuser and filter.
 - L1B products used to plot SW gain ratio, LW spectral correction Cal Drum factor and filter transmission for expert assessment of any need to update CCDB parameters (review every 6 months)

BBR IOCV concept

→ THE EUROPEAN SPACE AGENCY

During Commissioning:

- Switch on, decontamination (12 hr), health status check (telemetry in limits), functional check (mode changes, mechanism movements etc.)
- Detector raw data check (comparison of raw mode and processed output in the instrument ISP to verify on-board DSP.)
- LW performance check from standard L1b data product (gain, LW radiance noise, gain stability).
 - Possible updates to blackbody power, calibration interval.
- SW calibration collects data for in-flight reference and any update of calibration parameters
 - Performance check compares data against Visible Calibration (VisCal) system on-ground reference characterization and calibration 2 months later (MPD noise and collection of in-flight aging reference SW gain ratio, LW spectral correction factor and filter transmission)
- Detector linearity check via swap of powers to hot and cold BBs over several hours with instrument continuous operation
 - Repeated 6 monthly, although no linearity change is expected

BBR key calibration parameters

2021 | Slide 8

→ THE EUROPEAN SPACE AGENCY

	measured pre-flight	measured in-flight	applied in-flight	Data frequency
SW gain ratio, B	~	Derived from BBR_SOL_1B	✓ CCDB	Collect 2 mo, assess 6 mo
LW spectral correction factor, A	\checkmark	Derived from BBR_SOL_1B	✓ CCDB	Collect 2 mo, assess 6 mo
SW filter transmission, $<\tau > _{SW}$	~	Derived from BBR_SOL_1B	✓ CCDB	Collect 2 mo, assess 6 mo
Detector linearity	\checkmark	BBR_LIN_1B	✓ CCDB	6 mo
Detector gain, G _{LW}	✓	Derived from BBR_LIN_1B	✓ CCDB	90 s
TW calibration interval	\checkmark	Derived from BBR_LIN_1B	On-board	90 s
Offset and gain stability	~	Derived from BBR_LIN_1B	✓ CCDB	90 s
MPD noise	ontical instruments in orb	BBR_SOL_1B	Verification - 2 nd ESA EarthCARE V	Collect 2 mo, assess 6 mo

+ 1

 $\boldsymbol{*}$

MSI calibration concept – VNS camera

→ THE EUROPEAN SPACE AGENCY

Pushbroom onto 4 detectors, calibration of data to radiance units.

- One SWIR-2 aperture and a second aperture for Visible, NIR and SWIR-1 channels.
- Daily two point calibration against a solar illuminated diffusor and the closed shutter.
 - Closed shutter to collect dark signal, in order to characterise detector fixed pattern offset & noise; generated flat field will be activated and subsequently applied automatically on-board.
 - Daily bright scene calibration using one pair of solar illuminated diffusors in front of the two camera apertures (data monitored to track performance degradation.)
- Monthly diffusor pair used to monitor degradation of the diffusors (data to correct long term drift in diffusor performance.)
- Specific L1b calibration data products generated for monitoring.

MSI calibration concept – **TIR** camera

Pushbroom with 3 channels dispersed onto a single detector, calibration of data to brightness temperature.

- Increases sensitivity using 19 rows of Time Delay Integration, applied automatically on-board.
- A 4th reference channel collects data from a detector view of the internal optics, which the ground processor averages & subtracts from scene channel signals to correct for thermal drift & detector noise.
- Daily two point calibration against the cold scene and an internal blackbody.
 - TIR views the cold space port to characterise the detector fixed pattern offset and noise; flat field generated will be activated and subsequently applied automatically on-board.
 - TIR views the internal blackbody to monitor sensitivity changes.
- Specific L1b calibration data products generated for monitoring.

→ THE EUROPEAN SPACE AGENCY

MSI IOCV concept

→ THE EUROPEAN SPACE AGENCY

During Commissioning:

- Switch on, decontamination (30 days), health status check (telemetry in limits), functional check (mode changes, Active Thermal Control, mechanism movements etc.)
- Calibrations collect and apply VNS and TIR flat fields.
- TIR raw mode operation to collect reference in-flight TIR detector pixel map (no TDI.)
- VNS performance check from standard L1b data products and collection of in-flight reference (detector characteristics, diffusor references).
- TIR performance check from standard L1b data products and collection of in-flight reference data (detector characteristics, checks for sensitivity to detector temperature and bias voltages, relay lens temperature, bench and case temperature, cold space mirror self emission)

MSI key calibration parameters

→ THE EUROPEAN SPACE AGENCY

	measured pre-flight	measured in-flight	applied in- flight	Data frequency
Flat fields; TIR, VNS	✓	Stored in ICU	On-board via TC	daily
VNS diffusor datasets daily, monthly; detector noise, responsivity	\checkmark	MSI_SD2_1B, MSI_SD1_1B	✓ CCDB	daily, monthly
VNS closed shutter datasets; flat field, image statistics	✓	MSI_DRK_1B	✓ CCDB	daily
TIR calibration products BB & CS views; detector noise, responsivity, flat field	\checkmark	MSI_BBS_1B	✓ CCDB	daily
TIR sensitivity; detector bias V, detector temp., relay lens temp., bench temp., case temp.	✓	MSI_TRF_1B	✓ CCDB	daily
TIR cold space mirror offset	\checkmark	TIR_CSM_OFFSET	✓ CCDB	daily
Gain corrections; TIR, VNS	✓	TIR_GAIN_CORR, VNS_RAD_CORR	✓ CCDB	daily

EarthCARE optical instruments in-orbit characterisation, calibration and verification - 2nd ESA EarthCARE Validation Workshop– Webex | 25 May 2021 | Slide 12

ATLID calibration concept and IOCV → See presentation of Georgios Tzeremes

Thank you for your attention.

Questions?

EarthCARE optical instruments in-orbit characterisation, calibration and verification - 2nd ESA EarthCARE Validation Workshop– Webex | 25 May 2021 | Slide 13

→ THE EUROPEAN SPACE AGENCY