

Lessons learned from the validation of Aeolus L2A product with EARLINET

Nikos Siomos (NOA)

Holger Baars (TROPOS)

Contribution from the EARLINET consortium

ESA UNCLASSIFIED – For ESA Official Use Only

2nd ESA EarthCARE Validation Workshop 25-28 May 2021 (online)

→ THE EUROPEAN SPACE AGENCY

EARLINET Cal/Val

Evaluate the AEOLUS satellite L2A product with the retrievals of the ground-based lidar systems of EARLINET (European Aerosol Research Lidar Network)

Station	No. of Overpasses
Antikythera	8
Andoya	1
Athens	Under Processing
Barcelona	20
Bucharest	2
Granada	14
Evora	25
Lecce	2
Leipzig	Under Processing
Lille	3
Potenza	6
Thessaloniki	9
Warsaw	1

96 Overpasses

- AEOLUS Baseline 10 files (06/2019 - 10/2020)
- AEOLUS Baseline 11 files (10/2020 – 05/2021)
- Analysis focused on the AEOLUS Backscatter
- Conversion to AEOLUS like co-polar backscatter when possible
- Backscatter profiles from 13 stations were analysed more will be added soon
- 4 stations included depolarization ratio profiles at 355m used for conversion to AEOLUS like Backscatter

Methodology

Collocation Criteria

- Spatial collocation \rightarrow **100km**
- Temporal collocation \rightarrow ±3 hours

Handling multiple profiles in a single overpass

- **Closest** overpass: The closest satellite profile in time to the ground-based measurement is selected
- Average overpass: The satellite profiles (up to 3 for 100km radius) are averaged

Start: 03Jul2019 16:19:22 UTC End: 03Jul2019 16:19:22 UTC 21.31°E 22.31°E 23.31°E 24.31°E 25.31°E

ANTIKYTHERA

Methodology

Basic Cloud Screening on AEOLUS profiles

- Using the profile optical depth \rightarrow less than 1.5
- Using bin-to-bin backscatter difference \rightarrow less than 7.5 Mm⁻¹ sr⁻¹

AEOLUS on 2019-09-11 at 04:39 UTC - Lidar on 2019-09-11 at 05:00 UTC Station: Thessaloniki, Elevation: 60.0 m, Lat.: 40.63°, Lon.: 22.95°, Time Dif. (Sat-Lid): 0.35h, Distance (Lowerost Vertical Bin): 54.6Km AEOLUS on 2020-05-26 at 17:37 UTC - Lidar on 2020-05-26 at 15:03 UTC Station: Barcelona, Elevation: 115.0 m, Lat.: 41.39°, Lon.: 2.12°, Time Dif. (Sat-Lid): 2.58h, Distance (Lowerost Vertical Bin): 39.3Km

Methodology

Basic Cloud Screening on AEOLUS profiles

- Using the profile optical depth \rightarrow less than 1.5
- Using bin-to-bin backscatter difference \rightarrow less than 7.5 Mm⁻¹ sr⁻¹

<u>More sophisticated approaches in the future (not implemented here)</u>

• Use satellite cloud data (e.g. MSG) for automated cloud screening

clouds

Middle

clouds

Low

clouds

Aeolus-like products: backscatter coefficient

Simulation for a typical dust aerosol layer with a linear particle depolarization ratio ~30%

AEOLUS detects the co-polar component from circularly polarized radiation at $355nm \rightarrow$ **underestimation when comparing to the total backscatter**

Some EARLINET stations perform linear particle depolarization measurements

The total backscatter can be converted to AEOLUS like:

- by converting the particle linear to particle circular depolarization ratio first
- Then use the particle circular depolarization ratio to convert the total to co-polar backscatter (AEOLUS like backscatter)

It is important to identify the dust cases!

Dust mask

EARLINET based flags

- Thresholds applied on depolarization profiles (355 or 532nm)
- Particle Dep. Ratio between 0.1 and 0.4 in a vertical region larger than 500m in the profile
- Not all stations have depolarization channels!

Antikythera Sample Profiles

Dust mask

AERONET based flags (Version 3 – Level 1.5 files)

- Using the Fine Mode Fraction 550nm and the Single Scattering Albedo 440nm
- FMF usually available for daytime direct sun measurements

Some examples

Cloud Mask off

Cloud Mask on

AEOLUS on 2020-05-26 at 17:37 UTC - Lidar on 2020-05-26 at 15:03 UTC Station: Barcelona, Elevation: 115.0 m, Lat.: 41.39°, Lon.: 2.12°, Time Dif. (Sat-Lid): 2.58h, Distance (Lowerost Vertical Bin): 39.3Km AEOLUS on 2020-05-26 at 17:37 UTC - Lidar on 2020-05-26 at 15:03 UTC Station: Barcelona, Elevation: 115.0 m, Lat.: 41.39°, Lon.: 2.12°, Time Dif. (Sat-Lid): 2.58h, Distance (Lowerost Vertical Bin): 39.3Km

- Here at least 1 satellite profile within the overpass was cloud free.
- Removing the cloudy ones leaves the best to be selected as overpass for the Average profile

Some examples

Cloud Mask off

Cloud Mask on

AEOLUS on 2019-10-02 at 04:38 UTC - Lidar on 2019-10-02 at 04:19 UTC Station: Thessaloniki, Elevation: 60.0 m, Lat.: 40.63°, Lon.: 22.95°, Time Dif. (Sat-Lid): 0.31h, Distance (Lowerost Vertical Bin): 58.0Km AEOLUS on 2019-10-02 at 04:38 UTC - Lidar on 2019-10-02 at 04:19 UTC Station: Thessaloniki, Elevation: 60.0 m, Lat.: 40.63°, Lon.: 22.95°, Time Dif. (Sat-Lid): 0.32h, Distance (Lowerost Vertical Bin): 32.0Km

- The ground spike is common. It is not clear if it due to cloud contamination
- The bin-to-bin backscatter threshold leads to better profiles

EARLINET vertical profiles to AEOLUS vertical levels

The conversion is performed case wise

Each overpass corresponds to slightly different altitude vertical levels due to orography

- Rescaling of ground profiles to AEOLUS vertical bins
- Modification on the profile shape and optical properties magnitude
- Necessary in order to quantify the differences!

Correlation – cloud mask off

Larger AEOLUS backscatter values due to clouds --> low correlation

Correlation – cloud mask on

EARLINET Overpasses - Total Backscatter Coefficient

EARLINET Overpasses - Co-Polar Backscatter Coefficient

- Most large values are removed and the correlation improves
- Higher correlation values for the Middle Bin algorithm closest profile better correlated for the co-polar

Biases below 2km – cloud mask on

Backscatter Coefficient Bias (AEOLUS - EARLINET)

Co-Polar Backscatter Coefficient Bias (AEOLUS - EARLINET)

- AEOLUS tendency to overestimate below 2km in the Middle bin algorithm
- Reason --> Ground spike! It mainly occurs to Middle Bin

Biases above 2km – cloud mask on

Backscatter Coefficient Bias (AEOLUS - EARLINET)

Co-Polar Backscatter Coefficient Bias (AEOLUS - EARLINET)

- Better statistics above 2km! Both the mean bias and the spread are reduced
- Using the co-polar backscatter doesn't seem to improve the bias BUT the number of co-polar data is limited
- Applying the dust flags will show if there is a clear negative AEOLUS total backscatter bias

Summary

- A basic cloud mask can be achieved from AEOLUS data awaiting for the Baseline 12 products that include scene homogeneity flagging
- AEOLUS vs EARLINET backscatter correlation increase from approx. 0.2 0.3 to 0.5 0.7 by throwing out the cloud contaminated data
- Better correlation for the Middle Bin than the Rayleigh Bin
- The ground spike issue is more pronounced in the Middle Bin algorithm leading to positive biases below 2km
- Better statistics (mean absolute bias and spread) above 2km: MAB 1.25 → 0.35 Mm⁻¹sr⁻¹
 Spread: 2.5 → 0.5 Mm⁻¹sr⁻¹
- The dust flags will be applied soon → check if dust cases are associated with more negative total backscatter mean biases

Thank you for your attention!

2nd ESA EarthCARE Validation Workshop 25-28 May 2021 (online)

ESA UNCLASSIFIED – For ESA Official Use Only

