CALIPSO Validation Lessons Learned

Dave Winker, Mark Vaughan and the CALIPSO team

2nd EarthCARE Validation Workshop, 25-28 May 2021

- Verify instrument performance
 - calibration, SNR, linearity, transient recovery
- Verify geolocation
 - pointing, altitude registration
- Quantify the accuracy and precision of Level 2 science data products
 - identify sources of random errors and biases
- Examine underlying assumptions in retrieval algorithms
 - S_a, S_c, spectral independence of cirrus backscatter
- Supports quality assurance, algorithm improvement activities

From yesterday: "... calibration is a never-ending process ... regular reprocessing campaigns ... improvements of the Level 1 dataset"

Each data release involves a new round of validation:

- Improved calibration in Version 4 (2014) allowed aerosol retrievals to 30 km
- First stratospheric aerosol product released in 2018

Validation against solar occultation and limb scattering sensors

Zonally averaged CALIOP extinction coefficient profiles for data acquired between 30°N and 30°S compared to data from SAGE III-ISS, OMPS, and OSIRIS (Kar et al. 2019)

- Early validation of Level 1 profiles was critical
- Targeted airborne campaign in Aug 2006 (CC-VEX)
- Payload on NASA ER-2:
 - Goddard Cloud Profiling Lidar (CPL)
 - JPL W-band radar (CRS)
 - MODIS Airborne Simulator (MAS)
- Initial CALIOP Level 1 validation objectives:
 - Sanity check on Level 1 lidar profiles
 - Do they 'look right'? Unexpected artifacts?
 - Verify predicted detection sensitivity
 - Radiometric calibration
 - Relative calibration of perpendicular channel (PGR)
 - Performed using on-board pseudo-depolarizer

Airborne validation of spatial properties measured by the CALIPSO lidar

Matthew J. McGill,¹ Mark A. Vaughan,² Charles R. Trepte,³ William D. Hart,⁴ Dennis L. Hlavka,⁴ David M. Winker,³ and Ralph Kuehn²

Received 9 April 2007; revised 24 June 2007; accepted 16 July 2007; published 17 October 2007.

Recently identified a long-suspected day/night depolarization bias (~ 3%) using special operations:

Will improve daytime polarization calibration in next data release

- 70 meter 'swath' spatial matching to ground sites is rare
- Few validation datasets available to validate
 - profile measurements
 - nighttime aerosol retrievals
 - aerosol retrievals above (low SNR) or below (attenuation correction) clouds
- Global data products means global validation

Validation Resources

- Ground-based networks
 - Aeronet
 - Earlinet, ADnet
- Satellite comparisons
 - MODIS, MLS, AIRS
 - CALIOP vs. IIR
- Targeted, continuing aircraft campaigns
 - LaRC HSRL (King Air)
 - NOAA ESRL (Cessna)
- Large field campaigns
 - NASA AMMA (Cape Verde)
 - SAMUM
 - CIRCLE-2
 - NASA TC⁴ (Costa Rica)
 - ASTAR/PAM-ARCMIP
 - ARCTAS/PolarCat
 - SEAC4RS

Aug 2006 2006, 2008 May 2007 **Jul-Aug 2007** April 2007/09/11/12 April, July 2008 Aug-Sep 2012

Jun 2006 - 20012

• etc

- Useful, but need to accumulate samples over several years
 - Typically find one or two usable samples/station/year
 - Only provide column properties

Omar et al, 2012: 1081 samples over 4 years (600 cloud-free) Identified problems due to: Spatial mismatch Topography Aeronet cloud contamination

in addition to CALIOP retrieval errors

532 nm Calibration Assessment

4/17/2009

0∟ 25

30

35

Latitude [°N]

40

45

HSRL used as independent check on CALIOP calibration

Over 120 underflights since 2006: during various campaigns and dedicated flights

Biases and uncertainties in method estimated at 4.5%±3.2% (Rogers et al, ACP, 2011)

February

January

Direct characterization of extinction sensitivity:

 histogram of HSRL aerosol inside layers detected by CALIOP vs. histogram of all HSRL aerosol

Validation of CALIOP aerosol typing:

HSRL measured lidar ratio vs. CALIOP aerosol type (daytime)

- "Truth" is elusive
- Validation is never finished
 - It is only approached asymptotically
- Validation of products globally is challenging
- Large field campaigns useful, but:
 - Validation tends to be one objective of many
- Not exactly "validation" but critically important
 - Consistency checks (does it 'look right')
 - Intercomparison of multiple retrieval algorithms based on independent assumptions
- Satellite sensors may have limited accuracy, but are global
 - Depending on parameter and sensor, comparisons can vary from 'sanity check' to true validation