

EarthCARE L2 validation ALGORITHM DEVELOPER NEEDS

25 May 2021 2nd EarthCARE calibration/validation

workshop

ESA UNCLASSIFIED – For ESA Official Use Only

OUTLINE

- Mapping L2 products to physical quantities
- Survey of L2 processor developers' needs (responses are available <u>here</u>)
 - 1. Critical physical assumptions in processors
 - 2. Major retrieval uncertainties
 - 3. Validation needs
- Examples across validation paradigms: observation vs retrieval space
- Summary of validation needs: common themes
- What can L2 algorithms provide?

💶 📕 🛌 🚛 🖛 🕂 📲 🔚 📰 🔤 🔤 📲 📲 🚍 📲 🚛 🚳 📲 🧮 🖬 👫 📰 🕍 🗰 👘 🔶 The European space agency

2

	Cloud-top, vertically integrated and layerwise			Vertical profiles		
	Quantity	At nadir	Across-track	Quantity	At nadir	
Macrophysics	Cloud-top height	M-COP, A-CTH, A-TC, C-TC, AC-TC	M-COP, AM-CTH Cloud/precipitation fraction		A-TC, C-TC, AC-TC	
	Cloud-top phase & type	M-CM, A-TC, C-TC, AC-TC	M-CM, AM-CTH	Cloud/precipitation classification	A-TC, C-TC, AC-TC	
	Aerosol layer height/depth	A-ALD, A-TC	AM-ACD	Aerosol fraction	A-TC, ACM-COM	
	Aerosol layer classification	A-ALD, A-TC	AM-ACD	Aerosol species	A-TC, ACM-COM	
	Optical thickness	M-COP, A-EBD, ACM-CAP	M-COP	Extinction	A-EBD, ACM-COM, ACM-CAP	
	Effective radius	M-COP, A-ICE, ACM-CAP	M-COP	Effective radius	A-ICE, ACM-COM, ACM-CAP	
Ice cloud & snow	Water path	M-COP, A-ICE, C-CLD, ACM-CAP	M-COP	Water content	A-ICE, ACM-COM, ACM-CAP	
	Surface snow rate*	C-CLD, ACM-CAP		Snow rate	C-CLD, ACM-CAP	
				Snow median diameter	C-CLD, ACM-CAP	
				Extinction-to-backscatter ratio	A-EBD. ACM-CAP	
	Optical thickness	M-COP, A-EBD, ACM-CAP	M-COP	Extinction	A-EBD, ACM-COM, ACM-CAP	
Liquid cloud	Effective radius	M-COP, ACM-CAP	M-COP	Effective radius	ACM-COM, ACM-CAP	
-	Water path	M-COP, ACM-CAP	M-COP	Water content	C-CLD, ACM-COM, ACM-CAP	
	Surface rain rate*	C-CLD, ACM-CAP		Rain rate	C-CLD, ACM-CAP	
Rain	Rain water path	C-CLD, ACM-CAP		Rain water content	C-CLD, ACM-CAP	
				Median drop size	C-CLD, ACM-CAP	
	Aerosol optical thickness	M-AOT, A-ALD, A-AER, A-EBD, ACM-CAP	M-AOT, AM-ACD	Aerosol extinction	A-AER, A-EBD, ACM-COM, ACM-CAP	
Aerosol (per species)	Layer-mean extinction-to- backscatter ratio	A-ALD		Extinction-to-backscatter ratio	A-AER, A-EBD, ACM-CAP*	
	Layer-mean particle linear depolarisation ratio	A-ALD		Particle linear depolarisation ratio	A-AER, A-EBD	
	Ångström exponent	M-AOT (670/865nm), AM-ACD (355/670nm)	M-AOT (670/865nm), AM-ACD (355/670nm)			
	Broadband radiances @TOA		BM-RAD, ACM-RT	Broadband radiances	ACM-RT	
Radiation	Radiative fluxes @TOA		BMA-FLX, ACM-RT	Radiative fluxes	ACM-RT	
				Heating rates	ACM-RT	

	Uncertainty	Locations/scenes/regimes	Measurements needed	Products
Macrophysics	Aerosol layer detection	 Multiple aerosol layers Aerosol layers with strong internal structure Attributing aerosol plumes at nadir to features in the across-track imagery 	 Ground-based (& scanning?) and airborne lidars 	A-ALD, AM-ACD, A-TC
	Aerosol/cloud discrimination	Cloud embedded in aerosol layers	Ground-based lidars	A-ALD, AM-ACD, A-TC
	Cloud layer detection and structure	 Multiple cloud layers Cirrus over liquid cloud Non-precipitating liquid clouds 	 Ground-based (& scanning?) lidars & radiometers 	M-CLD, AM-CTH, A-TC, C-TC, AC-TC
	Liquid clouds not fully resolved by radar/lidar synergy	 Physical depth of liquid clouds (i.e. cloud base height) Mixed-phase layers embedded in ice Liquid (& liquid-topped mixed-phase) clouds below optically thick ice clouds Warm liquid clouds within cold rain 	 Ground-based ceilometers/lidars Multiple-frequency radars to constrain W- band attenuation Microwave radiometers for LWP Aircraft profiles of LWC 	A-TC, C-TC, AC-TC
	CPR surface clutter removal	Range of surface types	Ground-based radars	C-TC, C-FMR
Ice cloud & snow	Snow microphysics (e.g. PSDs, microwave scattering, density & fallspeed)	Stratiform vs convectiveRimed snow	 Bulk precipitation and particle imaging measurements at surface Profiles of in-situ particle properties in ice clouds 	C-CLD, ACM-CAP
	Ice microphysics (e.g. PSDs, ice optics, mass-size rel'n)	 Cloud-tops across range of temperatures, locations & cloud types 	In situ aircraft measurementsVisible & IR radiances	A-ICE, ACM-CAP
	Surface snow rate	Range of meteorological conditions	Ground-based radars and in-situ at surface	C-CLD, ACM-CAP
Liquid cloud	How to account for radiatively-important liquid clouds not detected by ATLID	 Deep ice clouds: embedded mixed-phase layers Layered cloud scenes Warm liquid clouds within cold rain 	 Microwave radiometer for LWP Profiles of liquid water content 	ACM-CAP
Rain	Relation between rain rate and drop size distribution	Warm rain (maritime)Convective/stratiform rain	Ground-based multiple-frequency radarsDual-pol weather radars over ocean	C-CLD, ACM-CAP
	Melting layer structure & radar attenuation	 Dependence on snow properties aloft Continuity of mass flux & size distributions across melting layer 	Ground-based & airborne multiple-frequency radar	C-CLD, ACM-CAP
Aerosol	Large AOT uncertainties over land; sensitivity to aerosol classification	 Range of different land classes (biomes) & ocean Range of different aerosol classes 	 Ground-based, e.g. AERONET(-OC) Ship-based sun photometers, e.g. MAN Satellite imagers, e.g. MODIS, VIIRS, 3MI 	M-AOT
Radiation	Detection of and/or representation of fluxes over snow-covered surfaces	Range of snow-covered surfaces	High-latitude ground stations	BM-RAD, BMA-FLX

EarthCARE

	ATLID, CPR, MSI, BBR	L2 algorithms	
	Evaluate different physical assumptions in the retrievals	Directly validate retrieved quantities	In-situ (aircraft & ground- based)
Remotely sensed (satellite,		FORWARD MODEL	
aircraft & ground- based)		RETRIEVAL	
		INSRUMENT SIMULATOR	Models
		DATA SSIMIL ATION	

Evaluation of ice microphysics assumptions using aircraft measurements

Hogan et al. (2012) used ground-based and airborne radars collocated with in-situ aircraft measurements to show that the mass-size relationship of Brown & Francis (1995) needs to be applied using the average particle diameter rather than the maximum diameter; **the latter implicitly assumes ice particles are spheres**.

- Used in-situ particle imaging measurements to characterize average ice particle shape (oblate spheroids with aspect ratio 0.6)
- Used aircraft measurements and mass-size relation to accurately model differential radar reflectivity from the Chilbolton radar
- Used in-situ PSD and mass-size relations to model radar reflectivity at X- and W-bands measured by ER-2 during the TC4 campaign
- Showed substantial reduction in an +5 dBZ over-estimate of radar reflectivity in the Rayleigh scattering regime at X- and W-bands.

Retrieval space

Validation

EarthCARE

	ATLID, CPR, MSI, BBR		L2 algorithms	
		FORWARD MODEL		In-situ (aircraft & ground- based)
Remotely sensed (satellite, aircraft & ground- based)	EarthCARE+ instruments: - multiple-frequency radar - microwave radiometer - polarimetric radar	TADOM RETRIEVAL	Compare two retrievals; ideally the validation retrieval: • Has more information than EarthCARE • Has been validated in-situ	
		INSRUMENT SIMULATOR OLTA-	NIL NI	Models

→ THE EUROPEAN SPACE AGENCY

Statistical validation:

 LWP used as a proxy to generate CFADs of observed and retrieved quantities in unrimed and rimed snow regimes (low vs high LWP)

Evaluation of snow retrievals

Direct validation:

 Ground-based Doppler radar retrievals of rimed snow at Hyytiälä (BAECC 2014) are validated against in-situ estimates of snow density

a)

 Retrieved density factor is well-correlated with liquid water path estimated from a microwave radiometer

Snow rate

Mason et al. (2018), JGR-Atmospheres

Retrieval space

Validation

EarthCARE

	ATLID, CPR, MSI, BBR		L2 algorithms	
		FORWARD MODEL		In-situ (aircraft & ground- based)
Remotely sensed (satellite, aircraft & ground- based)	Use retrieval to forward-model independent measurements & correlations Maximize collocation by scanning along EarthCARE tracks or intersecting through distributed networks	TETRIEVAL RETRIEVAL	 Correlations between retrieved quantities provide insights into processes Mature & well-calibrated retrievals e.g. rain rate from weather radar network 	
		INSRUMENT SIMULATOR -ATION		Models

Validation of rain retrievals

Direct validation:

- Maximizing correlative data:
 - EarthCARE tracks intersecting weather radar network for validating rain retrievals over oceans
 - Ground-based remote sensing: scans along EarthCARE tracks rather than vertically-pointing
- Forward-modelling independent X-band radar from ER-2 aircraft during TC4 campaign
 - Mason et al. (2017), ACP

Statistical validation:

 joint histograms (correlations between quantities); can map precipitation regimes between observation and retrieval space

Retrieval space

Validation

EarthCARE

	ATLID, CPR, MSI, BBR		L2 algorithms	
		FORWARD MODEL		In-situ (aircraft & ground- based)
Remotely sensed (satellite,		FORWARD MODEL		
aircraft & ground- based)		RETRIEVAL		
	Simulated EarthCARE scenes 🛛 🗲	INSRUMENT SIMULATOR	Model "truth"	
	 Assimilation of EarthCARE: Improved forecasts Real-time monitoring of instruments 	DATA ASSIMIL -ATION	Typically use retrievals for model evaluation, not the other way around	Models

Target classification evaluation using simulated EarthCARE scenes

ATLID (A-TC):

- Detects about 25% of ice cloud by volume
- Around 5% by mass

CPR (C-TC):

- Around 50% by volume (missing cloud-tops & cirrus)
- +90% by mass (sensitive to snow)
- Up to 97% including where CPR is extinguished Synergy (AC-TC):
- ATLID provides +10% by volume not detected by CPR
- ATLID-only detections makes negligible contribution by mass of ice
- But cloud-tops & cirrus are critical to radiation

Target classification evaluation using simulated EarthCARE scenes

ATLID (A-TC):

- Detects about 25% of liquid cloud by volume
- Around 5% by mass
- Scattered shallow liquid clouds are well-represented
- Missing 95% of liquid in deeper layers, convective cores, and collocated with rain

CPR (C-TC):

- Liquid cloud detection is very rare
 Synergy (AC-TC):
- Same as ATLID
- Is it possible to make a sensible assumption?
 - Assuming liquid cloud in cold rain resolves almost 80% of liquid by mass
- Improves ACM-CAP assimilation of MSI solar radiances; downstream improvement in ACM-RT

SUMMARY OF DEVELOPER NEEDS

- An incomplete survey of developer needs: detailed discussions in ATLID/Aerosols, CPR/Clouds and Radiation sessions
- Identified two major kinds of retrieval uncertainties:
 - Dependence on upstream target classification products: are the features we're trying to retrieve adequately resolved?
 - Complex & layered cloud and aerosol scenes
 - Identifying and characterizing surface types for passive and active instruments
 - Ground-based validation: "bottom-up" remote-sensed view of aerosol & cloud layers alongside insitu measurements at surface, to complement EarthCARE's blind zones
 - Universality: how well do our physical assumptions hold in other locations/regimes?
 - Physical assumptions may be mature, but often based on specific/limited studies
 - Opportunity to identify gaps, and target locations/regimes with campaigns
 - For statistical validation we need to be able to isolate processes: selecting/sub-setting data by location, correlated measurements, weather regime, cloud/precipitation type, etc.

→ THE EUROPEAN SPACE AGENCY

HOW CAN L2 ALGORITHMS BE LEVERAGED?

- EarthCARE L2 algorithms run with inputs from airborne and ground-based instruments
 - Benefit of validating in "retrieval space" without introducing a second retrieval
 - But requires a high level of pre-processing:
 - Calibration & correction
 - Common grid for synergistic measurements
 - Contextual information (instrument status, surface characterization, atmospheric profiles from re-analysis)
 - Description and metadata
- Can EarthCARE algorithms be used to generate validation data in "observation space"?
 - Forward-model non-EarthCARE instruments (e.g. X-band Doppler radar)
 - Forward-model EarthCARE-like instruments from ground-based configurations?

= 88 🛌 #= += 88 💻 🔚 == 2 88 88 == 2 #= 📾 88 == 88 F9 💥 == 1+1

→ THE EUROPEAN SPACE AGENCY