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Main challenges for comparing model and observations

1. Hydrometeor properties defined in terms of different moments (i.e., mass vs. radar reflectivity) 

2. Scale differences between model output and observations

3. Discrepancies in performance (i.e., ability to detect/simulate small amounts of liquid or ice)

4. Ill-defined evaluation metrics 
What does one mean by cloud layer depth in mixed-phase clouds? 
How much liquid is required for a hydrometeor population to be labeled as “mixed-phase”? 

5. What is a suitable evaluation spatiotemporal scale?

6. What level of accuracy between model and observations is acceptable?

Forward simulators can help overcome some of these barriers
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1- Models simulate each hydrometeor species separately, remote sensors cannot readily isolate hydrometeor species 
=> model output information about all species must be combined.
2- Observations are sensitive to hydrometeor moments that do not necessary strongly affect process rates in models.
=> missing key hydrometeor properties need to be retrieved or assumed. 

1. Hydrometeor properties defined in terms of different moments
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For all simulated species:
Stratiform & Convective
Clouds & Precipitation
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PSD information
• mass
• size
• shape of the distribution
Particle properties
• density
• shape
• fall speed
• water coating

GCM ModelE3 output Two types of observations
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ÞScattering calculations and empirically derived relationships allow us to convert simulated hydrometeors 
properties (~D3) to observables (~D6 and ~D2). Weather/climate model complexity influences the choice of 
scattering models

COMPLEX
Discrete Dipole Approximation for non-spherical particles (Draine et al 1994)

Mie theory for spherical particles (e.g., QuickBeam (Haynes et al. 2007) for COSP-CloudSat and for ARM CRS)
Ensemble of empirical relationship between water content – radar reflectivity (e.g., (GO)2-SIM (Lamer et al. 2018))
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(GO)2-SIM scattering model Lamer (2018) 

1. Hydrometeor properties defined in terms of different moments
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2. Scale differences between model output and observations

1- While models may provide 4D global or limited domain 
simulations, sensors collect dimensionally challenged measurements 
either at a fixed location or along an orbit/swath. 
ÞInstrument forward simulators allow us to extract the model grids 

that match the sensor sampling geometry. Those require knowledge 
of: 

• Platform geolocation information (i.e., orbit model)
• Viewing geometry (i.e., angle, swath)
• Revisiting time (i.e., diurnal sampling)

2- Sensor sampling volume often differs from model resolution. This 
scale gap must be addressed. Techniques to address the scale gap 
generally vary with model resolution.
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2. Scale gap – Model grid >> Observation volume

Noise/clutter
filtering

When model doesn’t resolve cloud and precipitation features but observations do 
we need to decide how should hydrometeor fraction be distributed in space.

Why: Vertical overlap between cloud and precipitation layers strongly affects remote 
sensing measurements because signal attenuation generally increases with layer depth.

How: For example:
NASA/GISS ModelE3 horizontal resolution ~100 km
Ground-based ARM/KAZR observations: ~30 s 

Approximately 12 hrs of observation within a model grid
ÞCannot average without convoluting diurnal cycle and horizontal variability. 
ÞGenerate subcolumns that adheres to all overlap assumptions within the model
and distribute each species. (e.g., SCOPS (Klein and Jakob 1999; Webb et al. 2001), 
PRECIP-SCOSPS (Zhang et al. 2010), Raisanen et al. (2004))

But what if overlap assumptions for different water phase species are not given?
But what if overlap assumptions differ across schemes within the same model…

Lamer (2019) 
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2. Scale gap – Model grid << Observation volume

When model resolve cloud and precipitation features at a resolution higher than 
we can observe them
=> an option is to apply an instrument forward simulator.

Requires knowledge of:
• Radar pulse range weighting function
• Radar pulse along track weighting function
• Footprint at the ground

500m 

200m-3km 

Battaglia et al. (2020) Lamer et al. (2020)
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3. Sensor performance – Effects other than scattering

Models can simulate even minute hydrometeor amounts. Instead 
of applying a threshold on model output to match instrument 
performance we can reproduced more realistic height dependent 
sensor detection limitations in forward space.

Þ Reproduce: 
• Range dependent sensitivity loss
• Signal attenuation by liquid (e.g., Chepfer et al. 2008)
• Blind zone cause by outgoing pulse or surface echo
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Lamer et al. (2020)
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(250 m range res., -26 dBZ MDS)Radar

Forward simulated radar reflectivity 
for different spaceborne radars



9

3. Sensor performance – Effects other than scattering

Within (GO)2-SIM, we a stratiform clouds and 
precipitation case we found that only ~78 % of 
simulated grid boxes could be 
observed/assessed by real sensors.

a2) Lidar total copol backscattering attenuated detected (m-1sr-1)

a1) Lidar total copol backscattering (m-1sr-1)

a3) Lidar linear depolarization ratio detected (  )

10-3

10-4

10-5

10-6

10-3

10-4

10-5

10-6

Total attenuation -40℃

0℃

0.0

b2) Radar total co-pol reflectivity attenuated detected (dBZ)

b1) Radar total co-pol reflectivity (dBZ)

b3) Radar co-pol mean Doppler velocity detected (m s-1)

b4) Radar co-pol Doppler spectral width detected (m s-1)

Total attenuation Loss of sensitivity with range -40℃

0℃

1.0

0.0

a2) Lidar total copol backscattering attenuated detected (m-1sr-1)

a1) Lidar total copol backscattering (m-1sr-1)

a3) Lidar linear depolarization ratio detected (  )

10-3

10-4

10-5

10-6

10-3

10-4

10-5

10-6

Total attenuation -40℃

0℃

0.0

b2) Radar total co-pol reflectivity attenuated detected (dBZ)

b1) Radar total co-pol reflectivity (dBZ)

b3) Radar co-pol mean Doppler velocity detected (m s-1)

b4) Radar co-pol Doppler spectral width detected (m s-1)

Total attenuation Loss of sensitivity with range -40℃

0℃

1.0

0.0

------Lidar ------
------R

adar ------

a2) Lidar total copol backscattering attenuated detected (m-1sr-1)

a1) Lidar total copol backscattering (m-1sr-1)

a3) Lidar linear depolarization ratio detected (  )

10-3

10-4

10-5

10-6

10-3

10-4

10-5

10-6

Total attenuation -40℃

0℃

0.0

b2) Radar total co-pol reflectivity attenuated detected (dBZ)

b1) Radar total co-pol reflectivity (dBZ)

b3) Radar co-pol mean Doppler velocity detected (m s-1)

b4) Radar co-pol Doppler spectral width detected (m s-1)

Total attenuation Loss of sensitivity with range -40℃

0℃

1.0

0.0

Forward simulated
lidar backscatter and radar reflectivity 

with and without instrument model

Lamer et al. (2018)

Models can simulate even minute hydrometeor amounts. Instead 
of applying a threshold on model output to match instrument 
performance we can reproduced more realistic height dependent 
sensor detection limitations in forward space.

Þ Reproduce: 
• Range dependent sensitivity loss
• Signal attenuation by liquid (e.g., Chepfer et al. 2008)
• Blind zone cause by outgoing pulse or surface echo
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3. Sensor performance – Non-meteorological echoes

One must remain mindful that forward simulators do not represent 
instrument noise, surface clutter, insects and other non-
meteorological targets.
ÞAs such it is essential that observations be rigorously quality 

controlled, filtered and calibrated before they can be used to 
guide model development.

Linear depolarization ratio (dB
)
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Signal to noise ratio (dB
)

ENA KAZR

Surface clutter

Artifact

Insects

Lamer et al. (2020)
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4. Evaluation metrics 
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Quality controlled observations and forward simulated model output can be compared to estimate model performance, but it 
may be difficult to track back the cause of any discrepancy
A more informative way is to apply the same retrieval to observations and forward simulated model output and compare the 
retrieved property. Useful for ill defined properties like hydrometeor layer depth or liquid fraction in mixed-phase systems.
ÞFor cloud layering, a possibility is to first establish if cloud are distributed correctly across 3 fundamental level 
• GOCCP approach (Cesana and Chepfer 2013; Chepfer et al 2010), 

• ISCCP approach (Rossow and Schiffer 1991) 

• CVS approach (Remillard and Tselioudis 2013, 2015)

• HVL approach (Lamer 2019) Lamer (2019) 
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12/04/2018Katia Lamer – PhD defense12Preliminary model evaluation of ModelE3 against ARM obs.
at the North Slope of Alaska

First metric: Dominant regimes types
December 2012 ARM observations
5 dominant regimes

December 2011 NASA ModelE3 simulation
✓ 4 dominant regimes were simulated
X Missing deep elevated layers (HxM)
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Second metric: Dominant regimes thickness
December 2012 ARM observations
Deep systems (HxMxL) extend to 7266m

December 2011 NASA ModelE3 simulation
X Deep systems (HxMxL) are too deep
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Preliminary model evaluation of ModelE3 against ARM obs.
at the North Slope of Alaska

Lamer (2019) 
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Third metric: Dominant regimes occurrence
December 2012 ARM observations
7 % deep systems (HxMxL)
5 % deep elevated layers (HxM)
7 % deep low-level layers (MxL)
33 % low-level layers (L)
26 % clear sky

December 2011 NASA ModelE3 simulation
OK deep systems (HxMxL)
- deep elevated layers (HxM)
✓ deep low-level layers (MxL)
+ 16 % low-level layers (L)
OK clear sky

Preliminary model evaluation of ModelE3 against ARM obs.
at the North Slope of Alaska

Lamer (2019) 
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Main challenges for comparing model and observations

1. Define hydrometeor properties in terms of the same moments (i.e., mass vs. radar reflectivity) 
Þ Apply scattering forward simulator to model output (mass => radar reflectivity, lidar backscatter)

2. Account for the scale differences
Model output scale << Measurement scale => Average model output using instrument IFOV weighting functions
Model output scale >> Measurement scale => Create model sub-columns that follow model assumptions

3. Objectively filter data for performance difference
Þ Forward simulate effects other than scattering (attenuation, sensitivity drop with range, blind-zone)
Þ Filter observations for non meteorological echoes (e.g., noise, surface clutter, insects) and calibrate them

4. Define an objective evaluation metric
Þ Apply the same retrieval on forward simulated model output and observations 

(e.g., hydrometeor layer depth, hydrometeor population phase)

5. Identify a suitable evaluation timescale
Þ Case study vs. statistical analysis

6. Define what level of discrepancy is acceptable or not given the uncertainty in the process


