

Latest status and future plans for airborne campaign – NRC Convair-580

Mengistu Wolde (NRC Canada) & collaborators

2nd ESA EarthCARE Validation Workshop

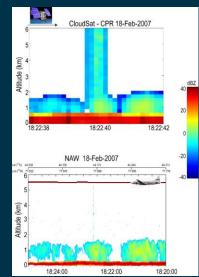
25-28 May 2021 (online)

ESA UNCLASSIFIED – For ESA Official Use Only

NRC Convair-580 – Major National **Facility for Atmospheric Research**

- Endurance: 4 5 hours
- Range: ~1000 km
 - Vertical ceiling: 23,000 ft (7000 m)

rac crac Canadä tinyurl.com/convair

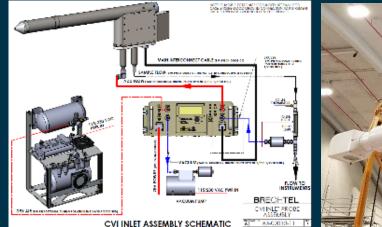

Radars: X, Ka and W; Lidar: 355 nm AECL; Radiometers: 183 GHz, HiSRAMS

In-situ: Atmospheric and Aircraft States, Aerosol, cloud microphysics

NRC and ECCC in collaborations with many partners has conducted many projects related to space based earth observations

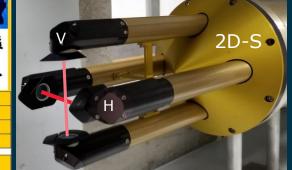
- CloudSat and CALIPSO (C3VP); GPM (GCPEX)
- ESA proof-of-concept studies (2017-Present): WIVERN (W-band PDPP), RadSnowExp, Raincast

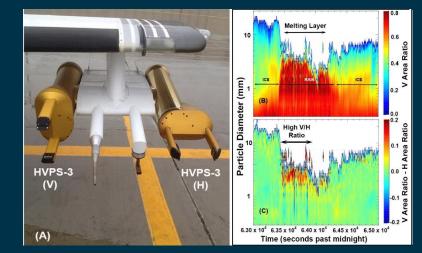
& HiSRAMS


New instruments

- SPEC HVPS-4 (2022)
- NRC cIKP (2022)
- HISRAMS (2021)
- CVI inlet (2022)
- Artium HSI (2021)

Convair HSI imagery from HAIC-HIWC Campaign Credit: W.D Bachalo –Artium

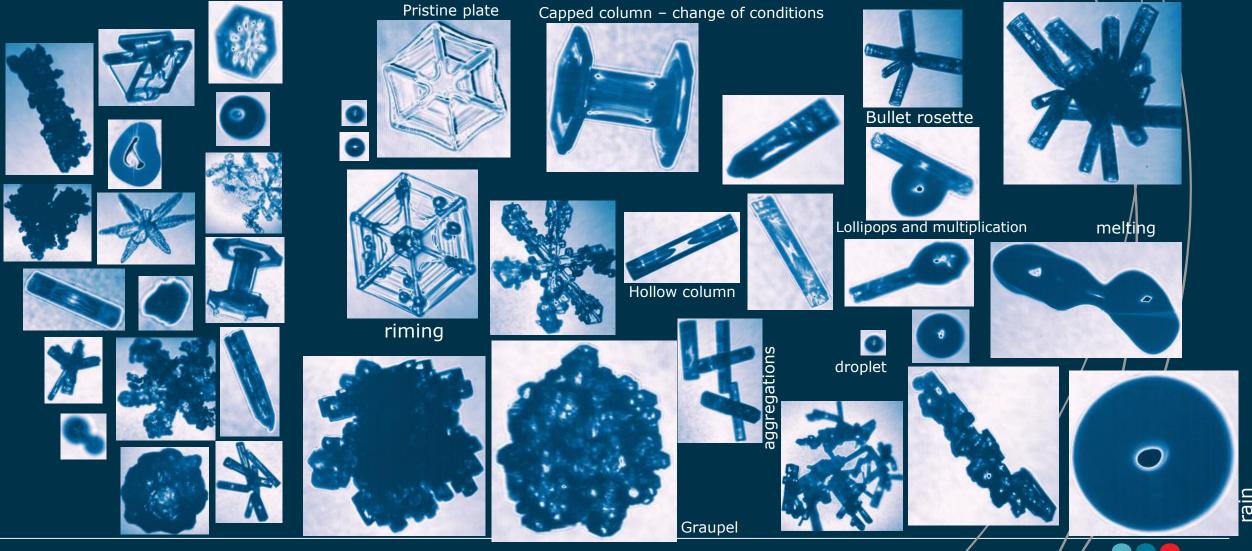

Science Drivers: Measurements in Ice



Ice Water Content (IWC) determined from image data typically uses power laws relating max dimension (Brown and Francis 1995) or projected area (Baker and Lawson 2006) to IWC.

Orthogonal views will significantly improve IWC accuracy.

	Plates and Column			Rosettes			Aggregates			Graupel			
CPI Image							×.		Mr and a	-			
2D-S H view			(* 12 B	*	+	*-	1		34.44	*			
2D-S V view	Û			**	イボ	**	*		***	*	*		
2D-S H width (µm)	101	123	163	185	372	318	652	334	293	422	404	551	
2D-S H length (µm)	731	342	306	346	435	438	953	390	441	760	475	655	
2D-S V width (um)	341	201	201	226	386	281	466	328	390	731	379	525	
2D-S V length (µm)	730	382	414	332	428	431	592	457	631	792	465	665	
2D-S H B&F mass (µg)	20.39	4.82	3.90	4.92	7.61	7.71	33.75	6.18	7.81	21.96	8.99	16.55	e
2D-S V B&F mass (µg)	20.34	5.94	6.92	4.55	7.38	7.47	13.66	8.35	15.42	23.75	8.63	17.04	
Mass Ratio (min/max) (%)	0%	23%	78%	8%	3%	3%	147%	35%	98%	8%	4%	3%	
2D-S H B&L mass(µg)	3.74	1.57	2.20	1.78	4.27	4.35	24.79	4.88	5.29	23.85	7.36	20.53	
2D-S V B&L mass (µg)	8.03	3.04	3.80	1.15	3.80	3.91	8.08	4.89	6.22	27.68	8.04	17.67	
Mass Ratio (min/max) (%)	115%	93%	72%6	55%	12%	11%	207%	0%	18%	16%	9%	16%	



HVPS-3 UND Citation during OLYMPEX Project

The SPEC HVPS-4: Dual Resolution with Four Orthogonal Views

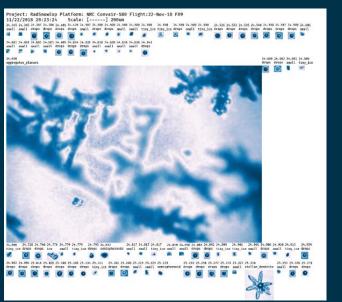
- HVPS-4 HVPS-4
- A cooperative development and flight testing effort between SPEC and NCAR (NSF MRI award). Prototype probe is flight tested now on the SPEC Learjet.
- Three added channels H and V: 50 μm & 150 μm vs. previous design
- Integration and flight test on NRC Convair-580 Nov-Dec, 2021; Project use Feb-March 2022

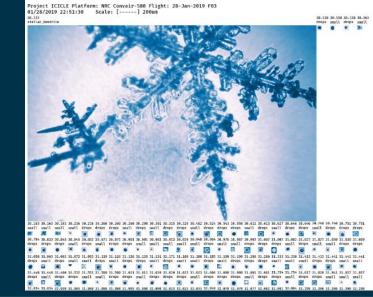
Ice habits carry history of cloud processes

Convolutional Neural Net CPI classification

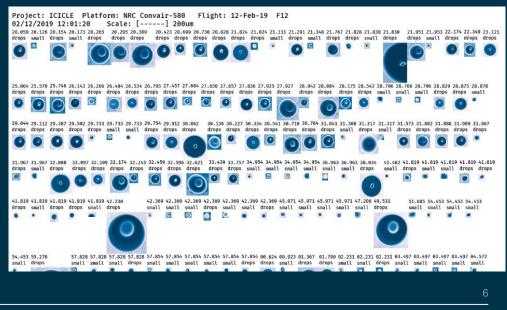
A CNN toolbox for Convair-580 imaging Classifies CPI images into labeled particle habits

Architecture

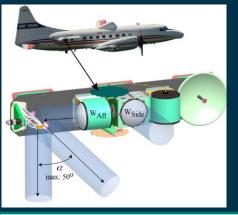

Multilayered Neural Network


Quality

Using quality metrics, we achieve ~0.99 accuracy on both training and validation set


Future developments

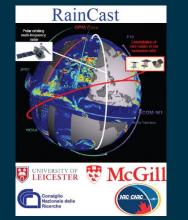
A similar toolbox is under development for other imaging probes



Recent Airborne Projects – Proof-of-concept studies for space applications (2016-now)

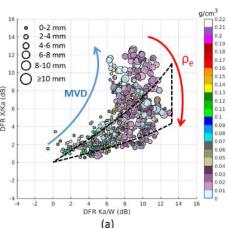
·eesa

Doppler Wind Radar Demonstrator for WIVERN


The NRC Airborne W Radar is used to measure high Doppler Velocity (>100 m/s) using Polarization Diversity Pulse Pair (PDPP) technique – First such measurement from a moving platform

Reference:

Illingworth et. al. (2018), Wolde et. al. (2019), Battaglia et. al. (2017)


RadSnowExp/RainCast – Multi-platform & multiple frequency Radar study

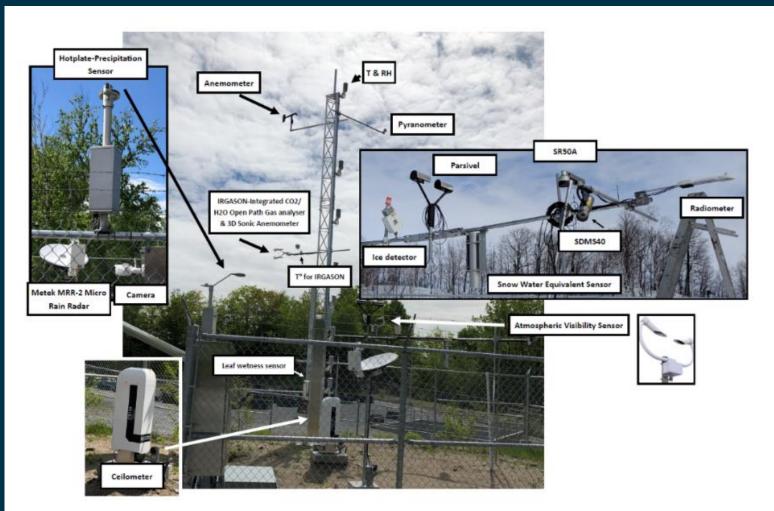
Airborne Triple-frequency measurement of Arctic Clouds

C. Nguyen, M. Wolde, A. Battaglia, et. al., 2021, "Triple-Frequency Airborne Radar Observation of Arctic and Mid-latitude Clouds". Atmos. Meas. Tech, submitted

High Spectral Resolution Airborne Microwave Sounder - HiSRAMS

St McGill

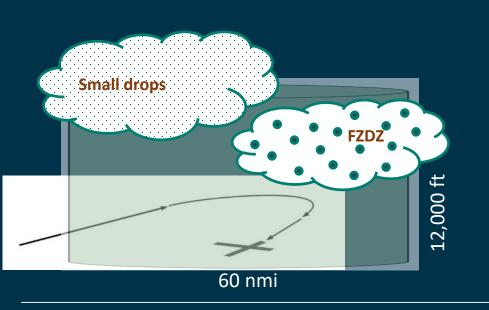
Two compact dual-polarized radiometers at 60 GHz oxygen and 183 GHz water-vapor bands

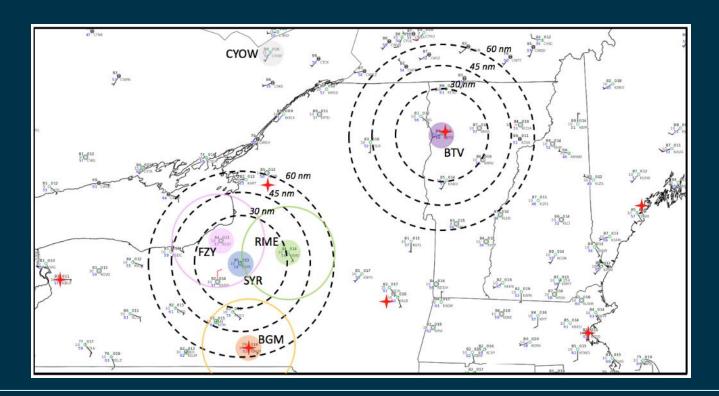

Spectral resolution up to 300 kHz (thousands of channels)

Zenith/nadir scanning capability

improved temperature and water vapor retrievals in the troposphere

Climate Sentinel Station in Ottawa (2022) J. Gyakum et. al.




Courtesy of Eve Bigras

FAA TAIWIN Demonstration Activity

- FAA Project Lead: Stephanie DiVito
- Supporting PIs: Scott Landolt (NCAR); Ben Bernstein (LEA)
- demonstration for a high-resolution terminal area icing capability under development
- Winter 2021-2022: Collect data while running V1 of capability in real-time at select airports
 - NRC Convair-580 (Feb 2022)
 - Instrumented ground sites

WINTRE-MIX WINter precip Type REsearch MultI-scale eXperiment (under review -NSF)

/worldview.earth

<u>Goal</u>:

To better understand how multi-scale processes influence the variability and predictability of precipitation type and amount under near-freezing surface conditions.

Target time frame:

- 1 February 15 March 2022 Target region:
- St. Lawrence / Champlain Valleys
- US (NY) CAN (QC) boarder

US PIs:

- J. Minder, N. Bassill (UAlbany)
- J. French, D. Kingsmill (UWyoming)
- K. Friedrich, A. Winters (UColorado)

Canadian PIs :

M. Wolde, Cuong Nguyen, Leonid Nichman (NRC) J. Gyakum, D. Kirshbaum, F. Fabry (McGill) J. Theriault (UOAM)

Aircraft campaigns

- Extensive in-situ and remote sensing capabilities (ground and aircraft)
- New and improved microphysical sensors for project use by 2022 on the NRC Convair-580
- Strong interest to collaborate in pre-launch and post-launch campaigns

ESA UNCLASSIFIED – For ESA Official Use Only

In-situ and remote sensing instruments on NRC Convair-580

Measured Parameters	Instrument						
Aircraft state	Inertial Navigation Systems (4), and GPS (2), Reverse Flow Temperature						
Atmospheric state	Rosemount Temperature Sensors (4), Licors (2) – Dew point, Chilled Mirror, Multiple pressure transducers including 3- 5-hole probes						
Aerosol	Wing mounted UHSAS, Cabin UHSAS, SP2, CCNcounter-100, CPC3776. optional(CPC3790, CN7610, LII300, SP2, APS)						
Icing and icing type (Dither algorithm)	Goodrich Icing Detector (3)						
Bulk microphysical measurements (TWC, LWC)	2x Nevzorov(analog), SEA ICD, Nevzorov(digital)						
Extinction	ECCC Extinction probe (CEP)						
Cloud Particles (Size and concentrations)	2x CDP-2, FCDP, FSSP						
Cloud drops shape, size and concentrations	2x 2DC; 2x 2DS; CIP-15, CIP-25, 2x HSI, CPI						
Large Precipitation Particles – shape, size and concentration	PIP, HVPS-3, HVPS-4						
Cloud Structure, dynamics and composition – Radar Reflectivity, Doppler	 NRC Airborne W (94.05 GHz) and X (9.41 GHz) (NAWX) band radars: 3 antennas (zenith, nadir, side) for each system, dual-polarization, dual-Doppler, Polarization Diversity Pulse Pair capability. Ka-band (35.64 GHz) radar: 2 antennas. Pilot X-band Radar 						
Brightness Temperature, temperature and water vapor profiles	HiSRAMS (Hyperspectral Radiometers at Oxygen band (60 GHz) and WV (183 GHz)) - scanning, option for up or down looking.						
Cloud Structure, and composition – Lidar backscatter	2x 355 nm, linearly polarized						
Lightning detection	Stormscope Goodrich WX-500						
Flight logs / chats / track marking	Planet ; ground to air communication and chat – low band width link, but allow chat and some limited data broadcast from the aircraft and also receiving data from ground						

*

+

*not all the listed sensors can be installed at once