

Lessons learned from the Aeolus DISC and Cal/Val

Oliver Reitebuch (DLR) with contribution from the Aeolus DISC and ESA colleagues

2nd ESA EarthCARE Validation Workshop

25-28 May 2021 (online)

ESA UNCLASSIFIED – For ESA Official Use Only

Lessons learned from the Aeolus DISC and Cal/Val

Oliver Reitebuch¹, Isabell Krisch¹, Christian Lemmerz¹, Oliver Lux¹, Uwe Marksteiner¹, Nafiseh Masoumzadeh¹, Fabian Weiler¹, Benjamin Witschas¹, Fabio Bracci², Markus Meringer², Karsten Schmidt², Dorit Huber³, Ines Nikolaus⁴, Frédéric Fabre⁵, Phil McGoldrick⁵, Michael Vaughan⁶, Katja Reissig⁷, Alain Dabas⁸, Thomas Flament⁸, Adrien Lacour⁸, J.-F. Mahfouf⁸, M. Savli⁸, Dimitri Trapon⁸, Vivien Pourret⁸, Saleh Abdalla⁹, Lars Isaksen⁹, Michael Rennie⁹, Angela Benedetti⁹, Julie Letertre-Danczak⁹, Dave Donovan¹⁰, Jos de Kloe¹⁰, Gert-Jan Marseille¹⁰, Ad Stoffelen¹⁰, Gerd-Jan van Zadelhoff¹⁰, Ping Wang¹⁰, Gaetan Perron¹¹, Sebastian Jupin-Langlois¹¹, Joost Smeets¹², Bas Pijnacker Hordijk¹², Simone Bucci¹³, Giacomo Gostinicchi¹³, Sebastian Bley¹⁴, Frithjof Ehlers¹⁵, Thomas Kanitz¹⁵, Anne-Grete Straume¹⁵, Denny Wernham¹⁵, Emilio Alvarez¹⁵, Jonas von Bismarck¹⁶, Peggy Fischer¹⁶, Marta De Laurentis¹⁶, Tommaso Parrinello¹⁶

¹DLR, Institute of Atmospheric Physics, Germany ²DLR, Remote Sensing Technology Institute, Germany ³DoRIT, Germany ⁴Physics Solutions, Munich University of Applied Sciences, Germany ⁵ Les Myriades, France ⁶OLA, UK ⁷IB Reissig, Germany ⁸Météo-France, France ⁹ECMWF, UK, ¹⁰KNMI, The Netherlands ¹¹ABB, Canada ¹²S&T, The Netherlands 1³serco, Italy ¹⁴ TROPOS, Germany ¹⁵ESA-ESTEC, The Netherlands ¹⁶ESA-ESRIN, Italy

Outline of the talk

 Aeolus mission, highlights and performance

- Aeolus processor and product evolution
- Validation of Aeolus products, communication and tools

ESA UNCLASSIFIED - For Official Use

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 3

__ II 🛌 :: 🖛 + II 🗯 🚝 🚝 II II = 二 :: :: II 🖬 💻 🖾 II 💥 📾 IV

Aeolus Data Innovation and Science Cluster (DISC)

Aeolus wind and aerosol observations

polar orbit, sun-synchronous
7 day repeat cycle with 111 orbits
≈ 16 orbits / day

resolution 3 km/90 km

altitude 320 km

6200 wind profiles of 1 wind component per day : 5-6 times more than radiosondes

Level 1B: calibration, signal levels Level 2A: aerosol product: ATB, β, α, S Level 2B: HLOS wind speed Level 2C: ECMWF model winds along track

Fig. ESA / ATG-medialab

altitude up to 30 km resolution 0.25 – 2 km 24 range bins

requirements: random error 1 – 2.5 m/s systematic error <0.7 m/s

Fig. compiled by I. Krisch (DLR)

Monitoring of wind data quality at ECMWF

- random errors in both channels increased since launch and show some decrease due to L2B processor improvements
- systematic errors (bias) for both Mie and Rayleigh winds (several m/s) showed strong slow drifts, orbital variations, differences for ascending and descending orbits, and occurrence in some range-gates Data quality reports available online:
 - Since 20 April 2020 global mean bias for both channels around 0 m/s

ESA UNCLASSIFIED - For Official Use

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 7

observation and ECMWF forecasted

HLOS wind

aladin/quality-control-reports

https://earth.esa.int/eogateway/instruments/

Figures M. Rennie (ECMWF) et al., 2021, QJRMS, revised

4 major causes for wind bias identified and corrected

Combination of several unexpected error sources with different temporal characteristics

- 1. Higher dark current rates for some "hot pixels"
 - ⇔ Corrected on 14 June 2019
- 2. Error in the on-board software in calculation of residual projection of the satellite ground speed on the line-of-sight LOS
 - ⇒ Corrected with Baseline 11 (08 October 2020)
- Slow drifts in the illumination of the Rayleigh/Mie spectrometers causing a slowly, linear drifting constant bias
 - ⇒ Corrected with Baseline 09 (20 April 2020)
- 4. Thermal variations of the **M1 telescope mirror**
 - ⇒ Corrected with Baseline 09 (20 April 2020)

2 remaining causes for Rayleigh/Mie winds identified

ESA UNCLASSIFIED - For Official Use

Figures by F. Weiler (DLR) et al., 2020, AMTD, Weiler et al (2021), under preparation

Aeolus mission objective to demonstrate positive impact on NWP is achieved

- For this period with good atmospheric signal with reprocessed L2B, Aeolus provides 4.8% relative FSOI Aeolus ≈ radiosondes, > scatterometer & GPSRO
- Shows the importance of wind profile observations in NWP even with higher random errors than requirements => impact could be even significantly higher for mission requirements

Fig. M. Rennie (ECMWF) et al., 2021, QJRMS, revised

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 10

Outline of the talk

 Aeolus mission, highlights and performance

- Aeolus processor and product evolution
- Validation of Aeolus products, communication and tools

ESA UNCLASSIFIED - For Official Use

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 11

Aeolus operational processors and data product baseline updates every 6 months

- New processor versions from DISC and baseline update for NRT and reprocessing every 6 months with improvements in data quality for all products from LO-L1A-L1B-L2A-L2B and calibration processors
- Next baseline update to baseline 12 product's will take place on May 26, 2021 => public data release of L2A aerosol products in June 2021
- First re-processed data set FM-B period 2019 was made publicly available in October 2020
- Currently second re-processing campaign is ongoing covering FM-B period until October 2020: will be available in September 2021

esa

ESA UNCLASSIFIED - For Official Use

Exploitation of synergies between Aeolus and EarthCARE for the first High-Spectral Resolution Lidars in Space

ATLID (Heliere et al. 2012)

Orbit 6139 Multi 3321 range-bin number **Operational** L2A Aeolus # of measurement $\times 10^4$ ESA UNCLASSIFIED - For Official Use

- EarthCARE Feature Mask was adapted and refined by KNMI (DD, GJvZ) to Aeolus needs using and re-coded for operational L2A processor V. 3.12 by DoRIT/Reissig (February 2021); is available in L2A products for baseline 12
- Currently Aeolus version of the **ATLID Optimal Estimation** algorithm (DD) is implemented in operational code for summer Feature Mask delivery of L2A V3.13: will be **FM probabilities** available for baseline 13 in Sept. 2021 Figure by **D. Huber**

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 13

(DoRIT)

*

Aeolus Level 2a product backscatter coefficient

Th. Flament (Météo-France) et al. AMTD, in preparation

esa

Outline of the talk

Aeolus mission, highlights and performance

- Aeolus processor and product evolution
- Validation of Aeolus products, communication and tools

ESA UNCLASSIFIED - For Official Use

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 15

Validation of Aeolus aerosol product with ground based lidar

AGU

Research Letters

Geophysical Research Letters

RESEARCH LETTER 10.1029/2020GL092194

Key Points: Smoke from the extraordinary 2020 Californian wild first traveled within 3-4 days toward Europe Highest Aemod Optical Thickness ever measured in the free troposphere over Leipzig, Germany, Central Europe, with ground-based Ildar Unique competunity for a first

Californian Wildfire Smoke Over Europe: A First Example of the Aerosol Observing Capabilities of Aeolus Compared to Ground-Based Lidar

¹ Holger Baars¹ , Martin Radenz¹ , Athena Augusta Floutsi¹ , Ronny Engelmann¹ , Dietrich Althausen¹ , Birgit Heese¹ , Albert Ansmann¹ , Thomas Flament², Alain Dabas⁶ , Dimitri Trapon¹, Oliver Reitebuch¹ , Sebastian Bley¹, and Ulla Wandinger¹ .

¹Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany, ²CNRM, Université de Toulouse, Médéo-France, CNRS, Toulouse, France, ⁷DLR, Institute of Atmospheric Physics, Oberpfaffenhofen, Germany, ⁴European Scace Agency (ESA) ESRIN, Finaeati, Italy

- Ground-based lidars measuring backscatter and extinction coefficient and depolarization at 355 nm are key for the validation of the Aeolus aerosol products L2A
- Ground-truth needed for assessment of Aeolus radiometric performance ("photon budget") for Mie channel (on-going)
- Routine observatations over longer period (>1 yr) needed due to only few colocations
- Active Cal/Val teams (funding!) with expertise in data product quality

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 16

Airborne validation with 2 wind lidars on DLR Falcon

 Validation of wind errors and their occurence analyzed with nominal and reprocessed Aeolus data → recommendations for Aeolus processor evolutions; QC advice for the Cal/Val community

Witschas et al. (2020), AMT, Lux et al. (2020), AMT

*

Figure: Ch. Lemmerz (DLR)

Balloon campaigns for wind validation in stratosphere Cesa

ESA UNCLASSIFIED - For Official Use

Interactive exploitation of Aeolus via VirES https://aeolus.services

Communication – WIKI, workshops, papers

Latest News

- [2021-05-23] Please be aware of temporary L2B wind date blocklistin 05-24T19:20:00.00000 and Stop UTC=2021-05-28T23:59:59.000000.
- [2021-05-19] Take note of an open position at ECMWF for the Aeolus /
- [2021-05-18] Deadline extended: The deadline for submission of the Cal
- [2021-05-14] Get ready for a major processor update (Baseline 12) taki processor improvements for Baseline 12).
- [2021-05-14] Please be aware of temporary L2B wind date blocklistin May 2021 23:59 UTC due to tests which might affect data quality.
- [2021-05-10] Please be aware of temporarty blocklisting on 11 May 2

Cal/Val projects

Aeolus mission calibration and validation is essential in or teams will perform diverse and widespread activities, inclu intercomparisons, model and NWP impact assessment stu

- Overview of Cal/Val proposals
- Synthesis of Cal/Val activities and results
- Predicted overpasses for Cal/Val stations
- Cal/Val stations file available at the Cal/Val ftp serve
- Upload portal for Cal/Val Reference measurements:
 Overview of Cal/Val campaigns
- Overview of Cal/Val campaign
 Half-Yearly Cal/Val reports
- Instrument and measurement status of Cal/Val mea

Discussions

The Cal/Val confluence discussions are addressing different topics, ple heavy analysis reports are expected to kept out of this board and shou Guidelines for the discussion boards.

EVE lidar system

- Aeolus products L1B, Wind Product L2B/L2C, Aerosol and Clouc
- Satellite and Instrument related discussions
- NWP impact assessment
- General tools, VirES, CODA, EVDC, Data reading, etc.
- Orbit and overpass prediction, ESOV, ZoneOverpass etc.
- Overview, feedback, reports and updates on Cal/Val projects
- Cal/Val campaigns discussions
- Atmospheric sampling
- Communication and Publication
- Aeolus Cal/Val FAQ

ESA UNCLASSIFIED - For Official Use

Data quality

- Weekly data quality reports
- Data Exclusion List
- NWP monitoring of HLOS winds

Aeolus

Cal/Val

Wiki

- Data quality assessment
- First Aeolus performance document

EGU European Geosciences

Atmospheric Measurement Techniques

Search

TICLES & PREPRINTS - SUBMISSION POLICIES - PEER REVIEW - EDITORIAL BOARD ABOUT - EGU PUBLICATIONS (\$)

8 accepted, 23 under review

Special issue | Aeolus data and their application (AMT/ACP/WCD inter-journal SI)

Editor(s): Ad Stoffelen, Ulla Wandinger, Anne Grete Straume Lindner, and Oliver Retietsuch Special issue jointly organized between Almospheric Measuremens Techniques, Almospheric Chemistry and Physics, and Weather and Olimate Dynamics

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 20

European Space Agency

α.

https://www.aeolus.esa.int/ confluence/pages/

Summary of some lessons learned

- Monitoring tools for instrument parameters (laser, temperatures, satellite), and product Level 1 and 2 are essential after launch; NRT monitoring using model output from ECMWF was key for bias correction
- Aeolus performance showed expected and unexpected behavior: laser, lidar signals, satellite, detector, thermal => we are in continuous "commissioning" phase
- Strong team of engineers/scientist with laser/lidar expertise, algorithm, operational processor development, NWP monitoring and impact within Aeolus DISC
- Strong support of cal/val teams is essential for mission success, e.g. ground, airborne, balloon, model => join Aeolus validation in preparation of EarthCARE
- Enhance cooperation between Aeolus and EarthCARE teams for the benefit of both missions and in support of an operational follow-on mission for Aeolus ESA UNCLASSIFIED - For Official Use

2nd ESA EarthCARE Validation Workshop | 25-28/05/2021 | Slide 21