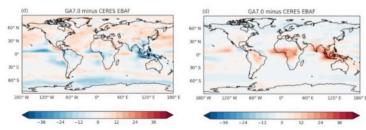
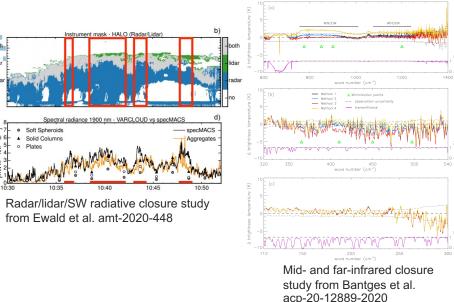

The CCREST campaign

Characterising CirRus and icE cloud acrosS the specTrum

Anthony Baran, <u>Stuart Fox</u> + many others 2nd ESA EarthCARE Validation Workshop, 27 May 2021


Contact:

anthony.baran@metoffice.gov.uk stuart.fox@metoffice.gov.uk



Campaign motivation

- Ice clouds play an important role in the earthatmosphere radiation balance for both weather forecasting and climate modelling
- Significant uncertainties in understanding of ice cloud radiative impact:
 - Diversity of ice crystal size and shape
 - Mass-dimension and area-dimension relationships
 - Shape and extent of size distribution (particularly small ice)
- Retrieval of ice microphysics from remote sensing requires realistic ice optical models across the spectrum
- Also needed for all-sky assimilation in NWP models
- Existing scattering databases are not fully consistent with observations

The long-term averaged Met Office ES model (GA 7) predictions of (a) short-wave and (b) long-wave TOA irradiances minus the CERES EBAF product from Walters et al. gmd-12-1909-2019

Objectives (wider project, airborne campaign is one component)

- Constrain the shape of the small ice and large ice modes in the PSD
- Determine which shapes of ice crystals and their aggregations mostly contribute to the observed mass- and area-dimension power laws
- Determine whether it is possible to obtain consistent representations of cirrus and ice cloud through generalisations of mass– and area–dimension relationships and their single-scattering properties. To apply optimal representations to improve all-sky data assimilation of cloudy radiances
- Reduce uncertainty in the globally-averaged short-wave and long-wave irradiances at the TOA to within current
 observational uncertainties of ±10 W m⁻²
- Reduce uncertainty in solar and infrared heating rate profiles of cirrus and ice cloud to within several K d⁻¹
- Reduce modelled zonally-averaged temperature biases through improved ice cloud representation
- Understand and quantify the contributions of cirrus and ice cloud to uncertainties in global cloud feedbacks and climate sensitivity

Observation requirements

Simple scenes

- Single-layer cirrus
- Well-characterised surface

Simultaneous in-situ and remote sensing observations Passive and active remote sensing

- Radiometer, radar, lidar
- Fully-characterised cloud scenes

Comprehensive in-situ microphysics observations

- Full size distributions
- Reliable small ice measurements
- Bulk liquid/ice water content

EarthCARE FORUM

Spectrally-resolved observations across the electromagnetic spectrum

microwave/sub-mm, far-ir, mid-ir, SW

Multiple aircraft required

- Simultaneous in-situ/remote
- Instrument payloads

Planning status

May 2020	Campaign proposal approved by internal Met Office advisory group
	First CCREST workshop held to bring together interested parties, introduce the campaign and discuss next steps
September 2020	 Following the workshop, a campaign White Paper was produced Interested parties to explore options for funding participation
April 2021	Second CCREST workshop held Campaign timing/locations discussed
2021-2022	 Prepare funding/grant proposals, confirm participation of partners Choose campaign location Ongoing instrumentation development
2023	Detailed campaign planning
March 2024	Preferred time for CCREST

- Aircraft availability
- Occurrence of single-layer cirrus
- Low cloud-top height
- Sufficient solar zenith angle

EarthCARE co-ordination/synergy

Definite

•Co-ordinate with EarthCARE track when it coincides with CCREST scene of interest

Possible

• Perform additional cloud observations coincident with EarthCARE where they are of relevance to CCREST goals e.g.:

• In-situ cloud microphysical measurements to constrain mass-area-dimension relationships

Jnlikely

•Dedicated EarthCARE flights observing scenes with no CCREST interest, e.g. clear sky/aerosol

Questions

·What cloud scenes are of most interest for EarthCARE cal/val?

• What observations types (e.g. in-situ or remote sensing) are most useful? Which are preferred to have the closest co-incidence to the satellite overpass?